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Abstract: This paper introduces new types of Euler-Lagrange PDEs required by optimal control problems with
performance criteria involving curvilinear or multiple integrals subject to evolutions of multidimensional-flow type.
Particularly, the anti-trace multi-time Euler-Lagrange PDEs are strongly connected to the multi-time maximum
principle. Section 1 comments the limitations of classical multi-variable variational calculus. Sections 2-3 refer to
variational calculus with gradient variations and curvilinear or multiple integral functionals. Section 4 is dedicated
to the study of the properties of multi-time Euler-Lagrange operator (affine changing of the Lagrangian, anti-trace
multi-time Euler-Lagrange PDEs and new conservation laws). Section 5 formulates an application to multi-time
rheonomic dynamics. Section 6 underlines the importance of the anti-trace multi-time Euler-Lagrange PDESs.

Key—Words gradient variations, multi-time Euler-Lagrange PDEs, multi-time maximum principle.
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1 Overview of classical multi-

variable variational calculus

The foundations of variational calculus have been
built using the classic Lagrange variation of an admis-
sible function, but this determines some limitations
that are not suitable for multi-time control theory. The
most important limitation comes from the fact that
the classical multi-variable variational calculus can-
not be applied directly to create a multi-time maxi-
mum principle. In fact, the functionals given as mul-
tiple integrals, subject to general variation functions
produce multi-variable Euler-Lagrange or Hamilton
PDEs containing a trace (total divergence), which is
not convenient for the conservation of the Hamilto-
nian. Indeed, the Hamiltonian is not a first integral
for the multi-variable Hamilton PDEs, even in the au-
tonomous case.

Our multi-time control theory successfully over-
comes the previous limitations [3]-[8]. This theory re-
guiresm-needle-shaped variations and complete inte-
grability conditions as core issues. Adding new ideas
in variational calculus via the gradient variations in
curvilinear and multiple integrals and the anti-trace
Euler-Lagrange or Hamilton PDEs, we have justified
a multi-time maximum principle which is similar to
the Pontryaguin maximum principle.

The previous two types of functional variations
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can be considered as "celebrities” of the optimiza-
tion theory, although the use of classical variations is
hardly compatible with amplitude constraints, while
m-needle-shaped variations are barely used in smooth
optimization problems.

2 Curvilinear integral functional

and gradient variations

Letz?, i = 1,...,n denote the field variables on the
target spaceR”, lett®, a = 1,...,m be the multi-
time variables on theource spacé&™, and letr?, =
ox’
ot~
bundle of order one is the manifold' (R™, R") =
{(t*, 2, x)}.

Assume we are given a smooth completely inte-
grablel-form

L= Lg(x(t),:ra,(t))dtﬁ, B,y=1,...m, t € R,

called autonomous Lagrangian 1-form The La-

grangian 1-form is determined by th@grange cov-
ector fieldLg(x(t), z,(t)). The complete integrabil-
ity conditions are

OLg 0x'  OLgdxl, 0L, 02’
dxt ot Oxi OtA -~ Oxt OtP

be the partial velocities. In this context, the jet

o0
axg oth”

LetTy, be an arbitrary piecewisé! curve join-
ing the points) andt, in R, and let), ;, be a par-
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allelepiped represented as the closed intebval? < Step 2 We compute the partial derivativegsi
to, fixed by the diagonal opposite poin@0, ...,0) fthe f ] ]
andty = (},...,t7) in R™. We fix the multi-time ~ ©f thé function

to € R, and two pointsrg, z; € R™ and we in- N
troduce a new problem of the calculus of variations J(e) = /F Lo (ﬂf(t) +eyn(d),
asking to find anm-sheetz*(-) : Qp, — R" that oo
minimizes the functional (curvilinear integral) o N i
- , B e (t)+e e (t)) dt
() = [ Do), )’ a,f=1,..m
Lot and we write

among all functionsz(-) satisfying the conditions oJ L, .
z(0) = =z, z(ty) = x1, usingC! gradient variation 0=>5500)= /F (8xi (@(t), z4(t))yp(t)
functions constrained by boundary conditions. ot

Fundamental question how can we character- o
ize that functionz*(-) which is the solution of the pre- + aL?( (t) (t))ﬁ(t) di°.
vious variational problem? oxt, T oy

Theorem 1 (multi-time non-homogeneous
Euler-Lagrange PDEs) If the m-sheetz*(-)
minimizes the functional/(z(-)) in the previous
sense, thenr*(-) is a solution of the multi-time

To process this formula we use the conditions for
variations, writing

non-homogeneous Euler-Lagrange PDEs 0= / aL‘,’ vl + 8L€, Oy, dt°
Tos, \ 021 77 Oz 0P
dLg 0 8L5 N 1 .
or' ALY dxl, cpir 8= 1,my By =1,y m. _ 0L ;  OLgOy,\ .,
= Yo + dt
(E — L), To., \ OT! Ozt Ot7
Here we have a system ofn second order PDEs oL o oL
with » unknown functionsc’(-). Theorem 1 shows = < f g - @) ndt?
that if we can solve théE' — L); PDEs system, then Tog \ 0% - 0t7 Oat
the minimizer of the functional® (assuming that it 9 (oL
exists) will be among the solutions. + 90 <8 f Z) date.
Proof. Step 1 Select a smooth gradient variation To.tg r
Yo : Qogo, — R™, y4(0) = 0, y,(to) = 0 with the .
primitive y : Qo.¢, — R, 4(0) = 0, 4(to) = 0. We Step 3 Since the 1-forms

of 1-forms L and of gradient variations)

add the conditions (complete integrability conditions <6L5 o 86Lg>
‘ ‘ ‘ ‘ dxt 7 Ot7 Ozl
8Lﬁ i 8L5 &U}y oL, i oL, 83/% ay}@ ay}y
O Yat Dt 0P AL R ot8 9 — ot must be pullbacks of some 1-fornd$Agi), we can
(CI), evaluate the first curvilinear integral using the formula

Let us define the parameter= (¢, ..., ™) and

o . Oyt B
— (V*d(A7. AT, — d(A”Y.
T = () + ys()) i (VAR = G d(AR) + ¥ g d(AR).
for e € R™ and we writex(-) = z*(+), i.e., we omit _ 0 ,
the superscript. One obtalns/ %d(AV) = 0, for all vari-

We remark that the perturbed functiaf(-) +
’yg(-) takes the same values a6) at the diagonal
points (endpoints) andt,. Sincez(-) is a minimizer,
we can write

ations ¢/, with y( ) = 0,9 (to) = 0, ¥, (0) =
0,y (to) = 0 satisfying (CI); and for all curves
ot in the curvilinear integrals.  Consequently,
0 (0L 0 OL

J(E) > J(.ﬁU()) _ J(O) @ axf (50 8ta ax;@ = 0. Therefore thQE —
L); PDEs hold for all multi-time$ € Qo 1.

Remark. There are two other ways to process
the previous formula, but finally they are inconvenient
758 (0) =0. because of the complete integrability conditions:

In this way, the function/(¢) has a minimum at the
pointe = 0, and consequently this must be a critical

point, i.e.
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1) the creation of a divergence operator, used usu-

ally in the variational calculus for multiple integrals,

/ OLo 0 Lo\ i
Posy \ Oat 00 Ot ) ¥P

0 (0L,
+ — ( y};) dt’;

To.to aty 8fo

2) the introduction a procedure suggested by our
multi-time maximum principle theory, based on the

_ %
o8’

oL X
0:/ — 84yl +
FO,tO (axz ﬁy’Y
Ly . . 0L, 0y
= 25yt + =1 | dt°
/I‘o,to (81‘1 s ¥ O, atﬁ)
_ / aL? 5Y — i% yi
Pos \ Ozt 0 019 dai )
- 9 (Lo i) gyo
FO,tQ atﬁ ax,zy yf)/ ’

3 Multiple integral functional and
gradient variations

namely

a 7
aL‘_’ D) g
(937% oty

dat°

Assume we are given a smodthgrangian
L(x(t),z4(t)), t € R

We fix the multi-timety € R, the parallelepiped
Dot C  RT with the diagonal opposite points
0(0,...,0) and ty = (t,...,t5"), and two points
g, 1 € R™.. We introduce a new problem of the cal-
culus of variations asking to find an-sheetz*(-) :
Qo4 — R" that minimizes the functional (multiple
integral)

J(2() = /Q L(a(t), - (8))dt" .de™,

among all functionsz(-) satisfying the conditions
x(0) = xg, z(to) = x1, using gradient variation func-
tions (satisfying not only usual boundary conditions
but also the complete integrability conditions).

Fundamental question how can we character-
ize that functionz*(-) which is the solution of the pre-
vious variational problem?

Theorem 2 (multi-time non-homogeneous
Euler-Lagrange PDES) If the m-sheetz*(:)
minimizes the functional/(z(-)) in the previous

68

sense, thenr*(-) is a solution of the multi-time
non-homogeneous Euler-Lagrange PDEs

oL 9 oL _ . _,
dai ool VT U

,n, y=1,...

(B —L)2

Here we have a system afsecond order PDEs
with n unknown functionsz?(-). Theorem 2 shows
that if we can solve théE — L), PDESs system, then
the minimizer of the functional (assuming it exists)
will be among the solutions.

Proof. Step 1 Select a smooth gradient variation
Yo : Qotg — R, ygm,to = 0 with the primitive
y : Qoty — R", y'lag,,, = 0. We add the complete
integrability conditions

,m.

Oy 9y,

A

(CI),

Define the parameter= (¢!, ...,¢™) and

J(e) = J(z() + "ys()),
for e € R™ and we writex(-) = z*(+), i.e., we omit
the superscript.

We remark that the perturbed functiat(-) +
¢’yg(-) takes the same values a6) at the boundary
of Qo+, Sincex(-) is a minimizer, we can write

J(€) = J(x() = J (0).
In this way, the function/(¢) has a minimum at the

pointe = 0, and consequently this must be a critical

.9
t, e, — = 0.
p0|n,|e,866(0) 0

Step 2 We compute the partial derivativegs%
€
of the function

ox

/Qo#t L (x(t) + eAyA(t)’ L)

J(e) = 567

+ EA%(t)> dtl...dt™,

and we puta—‘](o) =0or
OeP

(G w0, )ui0)
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To process this formula we use the conditions
(C1I), for the variations, writing

oL . oL 3y§ 1
_ iy b dtt...dtm
0 /Qo,to <axz Y Bai ot
oL ., 0 oL\ , .,
s 9 OL Y g am
o (G- 503 )

0 oL .
— b dtt...d™.
Qo oth (8:16%3/7)

+

The last integral is evaluated by the Fubini formula.
The first integral can be modified via Gauss formula
since

o o0 Oy ;0
a7 W' Bai) = 5 Boi + v 55 B
gy Oy 0 0L
Bi ™ pai B OB oxl,

Step 3 It remains

.0 (0L 0 0L
[ =60 — — == | dtt...dt™.
/Qo,to Yot (3;16@ B otb 8;1:@)

This equality holds for all differentiable variations
with y*|aq, ,, = 0. Therefore

i 8L5“/_i87[’ =0
oty \ox' P otPoxl |

and consequently the multi-tinié — L), PDEs hold
fort € Qo4,-

4 Properties of multi-time Euler-
Lagrange operator

4.1 Affine changing of the Lagrangian

Suppose thal.(t, z(t), z,(t)), t € R} is a smooth
Lagrangian. The following Lemma is well-known.
Lemma 3. The Euler-Lagrange derivative
EL(L) is independent of the partial accelerationgs
if and only if the LagrangianL is an affine function
in velocities, i.e.,L(t,z(t),z(t)) = W(t,z(t)) +
AP (¢, a(t))2,
Let us consider the homogeneous Euler-Lagrange
PDEs system

oL 9 L
ozt Oty E)x% N

,1=1,...
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together with the non-homogeneous Euler-Lagrange
PDEs system

oL 9 oL
ot oty 8:5%

=c¢,t=1..,n vy=1,...m.

The non-homogeneous Euler-Lagrange PDEs system
becomes homogeneous if the Lagrangians re-
placed by

L(t, (1), 2(t) = L(t, x(t), 2,(t) + W (t, z(t))
ALt 2 (t))l,,
where
0A]  04]

. 0A7
(7 . J
OxJ

? —_
oty

0B
ot Ty -

— =c;.
oxd J

A particular solution iSV = 0, A? = —Lc;t
Combining the previous remarks with some for-
mulas in Sections 2-3, we obtain the following
Theorem 4 The Euler-Lagrange operataf £
has the property

EL(L,h) = EL(L,Vh),

whereh stands for standard variations

Therefore, the non-homogeneous Euler-Lagrange
PDEs system (which originally was obtained from
L using gradient variations) is a homogeneous sys-
tem for the modified Lagrangiah and the standard
variations. From another point of view, the non-
homogeneous Euler-Lagrange PDEs systemdsra
trolled Lagrangian systerfor a constant control [1].

Open problem. What is the sense of affine
changing of classical Lagrangians? What is the sense
of homographic changing of classical Lagrangians?
When the gradient variations are adequate?

4.2 Anti-trace multi-time Euler-Lagrange
PDEs

The statements in Sections 2-3 suggest to introduce
theanti-trace multi-time Euler-Lagrange PDEs
oL o
ozt P

o oL

otP oxl, -

as generalizations of classical homogeneous Euler-
Lagrange PDEs. But, while the classical homoge-
neous Euler-Lagrange equations are invariant with re-
spect to changes of variablé¢s z) — (¢,z'), the
anti-trace multi-time Euler-Lagrange PDEs are invari-
ant only with respect tdt,z) — (t* = aft’ +

I

b,z ).
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Let us consider thanti-trace proceduras an al- 4.4 New conservation laws and anti-trace
gebraic operator applied to Euler-Lagrange operators. PDEs in case of curvilinear integrals
aozl:lsnegs-f%rn?;”g/;:'i gﬁgr:rgzrayxfgrgffglvered WO \when we use path independent curvilinear integral
Inv ) 9 ! : al. functionals, we have similar properties. But, a smooth

Theorem 5 1) The trace followed by a fibre scal- Lagrangian L(z(t),z (), t € R™ produces two
ing is an algebraic inverse of the anti-trace procedure. smooth completel)’/ ir?tegréable 1-fo+rm3'

2) The divergence is a differential inverse of the  the differential '
anti-trace procedure.

Proof. 1) If we start with anti-trace multi-time oL oL .
Euler-Lagrange PDEs, by the trace affery and by dL = o1 ozt Py
scaling the partial velocities, in the sense of changing T

the Lagrangian after the rule

L
of componente{ ——), with respect to the basis

L(t,x(t), zy(t)) = L1(t, z(t), mz~ (1)), dxt’ Oxl
; ; : - (dxi,dxiy);
\;\{;é) ?giwetﬂgvglﬁzzlr;ﬂg?;f -Lagrange PDEs associ - the restriction ofdL to (z(t),z~(t)), i.e., the
' pullback

2) Applying the divergence operator to anti-trace
multi-time Euler-Lagrange PDEs, i.e.,

oL 0z OL 0!,
B
0 <8L o 0 aL> _ ALl w(t)2r ) = (axz o " ot atﬂ> a“w

otr \ 0z P otP Ozt
we find of components
oL 0 0L . oL g
- — — = C;. €z
0x' Ot 0x, Ly(@(t), 2(1) = 5 (@(t), 2(1) 55()
Consequently the divergence and the anti-trace proce-
dure are related as "the primitive with the derivative”. oL ot

+8$% (x(t)vl"‘{(t))yg(t)a

4.3 New conservation law in case of multiple
integrals with respect to the basisit”). In this case, we must

underline that we have two different anti-trace Euler-

We start with the autonomous Lagrangian Lagrange tensor fields

L(x(t),z,(t)) and the associated homogeneous
Euler-Lagrange PDEs (1). Given the m-sheg), let

us introduce thenulti-momenturp = (p*) by the re- N L, . 0 0L,
; L Aaﬂi(:E’x)\) = i (z‘?x)\)éﬂ YY) i (:l:a :E)\)
lationspg (t) = o (2(t),(t)). Suppose that these Ox otP O,
xa . .
nm equations definem functionsz’ = a (z,p). , dLgs L 0 9L,
Sometimes, the variablesandp are calleccanonical Bjoi(w,2z) = 55 (2,22)00 — 5557 (@ 2),
Y

variables We define two tensor fields:
since the following Theorem is true.

— anti-trace Euler-Lagrange tensor field
grang G Theorem 6 The relations

. oL o oL
AGi(w, 1) = 55 (@, 29)073 — w%(x?%), 0 O0La 0 0Ls _,

: B dx ot oz
— energy-momentum tensor field

; 0 OL 0 OL 0 OL
T4 (z,p) = pdal(x,p) — L(x,p)0g. Bt ot <A 5>\57 SA ) =2~
g )_ Frple,p) = L )5_ 9 Dz, ot dmy 596) 5% 5
These tensor fields represent conservation laws for 5
Euler-Lagrange PDEs (1) since
g 90 (1) ’ o0 Aasi(B:02) = 5= Bli(w,3))
ot Bz =0, 3taTB =0 hold true.
The first relation can be written as a conservation

along the solutions of (1). While the second law is law
well-known, the first is new and it appears from the 9 OL OLg .,
anti-trace idea. @(E - W(SOC) =
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(D 0 oL
or ¢ ‘ote o8~ oz’

It implies the third relation between anti-trace multi-
time Euler-Lagrange operators. Furthermore, the ten-
sor fieldsA) 5, (z, ), Bj,,;(z,2,) represent equiv-
alent conservation laws for the homogeneous Euler-
Lagrange PDEs

OLo & OL.
dx' Ot Oz, a

A
03 —

(2)

Indeed, their difference is a tensor of "curl” type and

0 0
@Algi(%ﬂﬁ/\) =0, %Bgai(%ﬂ?,\) =0

along the solutions of (2).

Starting from the Euler-Lagrange PDEs (2), we
introduce:

1) the first kind of anti-trace multi-time Euler-
Lagrange PDEs

oL 0 oL
920 (0 5y)5) = 2 O%a _o;
Gt =T T g5 g (72 7A) = 0

2) thesecond kind of anti-trace multi-time Euler-
Lagrange PDEs

0Lg

oxt

0 0L,

- W@(%M) = 0.

('rvxk)da

Both anti-trace procedures have the same differ-
ential inverse (divergence), but different algebraic in-
verses (the first, trace followed by a fibre scaling; the
second, the trace). Consequently, applying the diver-
gence, both imply the same controlled Euler-Lagrange
PDEs system

oL, 0 oL,
ort ot 83:3

= Cqji-

That is why, the solutions of anti-trace multi-time
Euler-Lagrange PDEs are among the solutions of the
controlled Euler-Lagrange PDEs.

5 Application in Multi-Time Rheo-
nomic Dynamics

Our theory has applications in Relativistic and Multi-
Time Rheonomic Dynamics; the electromagnetic field
E = (EY), H = (HY), i = 1,2,3 determines the
density of electromagnetic deformation energy

1 OE OF7
1o sapB
25”5 (ata otP

() J
I 8H8H>’

ot oth
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wheret! = x,t? = y,t3 = 2, t* = it. The extremals
of L under gradient variations are described by the
controlled wave PDEs

O*H'

bi, A_Hl_ atZ :Ci7 ’L:

_oE _

AFE 92

1,2,3.

6 Conclusion

The present point of view regarding the multi-time
Euler-Lagrange PDEs has the key ideas in the union
between [3]-[8] and [1], [2]. Accepting that the evolu-
tion is m-dimensional, all the results confirm the pos-
sibility of passing from the single-time Pontryaguin’s
maximum principle to a multi-time maximum princi-
ple [4]-[8]. Furthermore, the main results belong to
PDEs-constrained optimal control theory.
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