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Abstract: This paper introduces new types of Euler-Lagrange PDEs required by optimal control problems with
performance criteria involving curvilinear or multiple integrals subject to evolutions of multidimensional-flow type.
Particularly, the anti-trace multi-time Euler-Lagrange PDEs are strongly connected to the multi-time maximum
principle. Section 1 comments the limitations of classical multi-variable variational calculus. Sections 2-3 refer to
variational calculus with gradient variations and curvilinear or multiple integral functionals. Section 4 is dedicated
to the study of the properties of multi-time Euler-Lagrange operator (affine changing of the Lagrangian, anti-trace
multi-time Euler-Lagrange PDEs and new conservation laws). Section 5 formulates an application to multi-time
rheonomic dynamics. Section 6 underlines the importance of the anti-trace multi-time Euler-Lagrange PDEs.
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1 Overview of classical multi-
variable variational calculus

The foundations of variational calculus have been
built using the classic Lagrange variation of an admis-
sible function, but this determines some limitations
that are not suitable for multi-time control theory. The
most important limitation comes from the fact that
the classical multi-variable variational calculus can-
not be applied directly to create a multi-time maxi-
mum principle. In fact, the functionals given as mul-
tiple integrals, subject to general variation functions
produce multi-variable Euler-Lagrange or Hamilton
PDEs containing a trace (total divergence), which is
not convenient for the conservation of the Hamilto-
nian. Indeed, the Hamiltonian is not a first integral
for the multi-variable Hamilton PDEs, even in the au-
tonomous case.

Our multi-time control theory successfully over-
comes the previous limitations [3]-[8]. This theory re-
quiresm-needle-shaped variations and complete inte-
grability conditions as core issues. Adding new ideas
in variational calculus via the gradient variations in
curvilinear and multiple integrals and the anti-trace
Euler-Lagrange or Hamilton PDEs, we have justified
a multi-time maximum principle which is similar to
the Pontryaguin maximum principle.

The previous two types of functional variations

∗WSEAS Transactions on Mathematics, ., . (2007), ...-....

can be considered as ”celebrities” of the optimiza-
tion theory, although the use of classical variations is
hardly compatible with amplitude constraints, while
m-needle-shaped variations are barely used in smooth
optimization problems.

2 Curvilinear integral functional
and gradient variations

Let xi, i = 1, . . . , n denote the field variables on the
target spaceRn, let tα, α = 1, . . . ,m be the multi-
time variables on thesource spaceRm, and letxi

α =
∂xi

∂tα
be the partial velocities. In this context, the jet

bundle of order one is the manifoldJ1(Rm, Rn) =
{(tα, xi, xi

α)}.
Assume we are given a smooth completely inte-

grable1-form

L = Lβ(x(t), xγ(t))dtβ , β, γ = 1, ...,m, t ∈ Rm
+ ,

called autonomous Lagrangian 1-form. The La-
grangian 1-form is determined by theLagrange cov-
ector fieldLβ(x(t), xγ(t)). The complete integrabil-
ity conditions are

∂Lβ

∂xi

∂xi

∂tλ
+

∂Lβ

∂xi
γ

∂xi
γ

∂tλ
=

∂Lλ

∂xi

∂xi

∂tβ
+

∂Lλ

∂xi
γ

∂xi
γ

∂tβ
.

Let Γ0,t0 be an arbitrary piecewiseC1 curve join-
ing the points0 andt0 in Rm

+ , and letΩ0,t0 be a par-
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allelepiped represented as the closed interval0 ≤ t ≤
t0, fixed by the diagonal opposite points0(0, ..., 0)
and t0 = (t10, ..., t

m
0 ) in Rm

+ . We fix the multi-time
t0 ∈ Rm

+ , and two pointsx0, x1 ∈ Rn and we in-
troduce a new problem of the calculus of variations
asking to find anm-sheetx∗(·) : Ω0,t0 → Rn that
minimizes the functional (curvilinear integral)

J(x(·)) =
∫
Γ0,t0

Lβ(x(t), xγ(t))dtβ, α, β = 1, ...,m,

among all functionsx(·) satisfying the conditions
x(0) = x0, x(t0) = x1, usingC1 gradient variation
functions constrained by boundary conditions.

Fundamental question: how can we character-
ize that functionx∗(·) which is the solution of the pre-
vious variational problem?

Theorem 1 (multi-time non-homogeneous
Euler-Lagrange PDEs). If the m-sheetx∗(·)
minimizes the functionalJ(x(·)) in the previous
sense, thenx∗(·) is a solution of the multi-time
non-homogeneous Euler-Lagrange PDEs

∂Lβ

∂xi
− ∂

∂tγ
∂Lβ

∂xi
γ

= cβi, i = 1, ..., n, β, γ = 1, ...,m.

(E − L)1
Here we have a system ofnm second order PDEs

with n unknown functionsxi(·). Theorem 1 shows
that if we can solve the(E − L)1 PDEs system, then
the minimizer of the functionalJα (assuming that it
exists) will be among the solutions.

Proof. Step 1. Select a smooth gradient variation
yα : Ω0,t0 → Rnm, yi

α(0) = 0, yi
α(t0) = 0 with the

primitive y : Ω0,t0 → Rn, yi(0) = 0, yi(t0) = 0. We
add the conditions (complete integrability conditions
of 1-formsL and of gradient variations)

∂Lβ

∂xi
yi

λ+
∂Lβ

∂xi
γ

∂yi
γ

∂tλ
=

∂Lλ

∂xi
yi

β+
∂Lλ

∂xi
γ

∂yi
γ

∂tβ
,

∂yi
β

∂tγ
=

∂yi
γ

∂tβ
.

(CI)1
Let us define the parameterε = (ε1, ..., εm) and

Jα(ε) = Jα(x(·) + εβyβ(·)),

for ε ∈ Rm and we writex(·) = x∗(·), i.e., we omit
the superscript∗.

We remark that the perturbed functionx(·) +
εβyβ(·) takes the same values asx(·) at the diagonal
points (endpoints)0 andt0. Sincex(·) is a minimizer,
we can write

J(ε) ≥ J(x(·)) = J(0).

In this way, the functionJ(ε) has a minimum at the
point ε = 0, and consequently this must be a critical

point, i.e.,
∂J

∂εβ
(0) = 0.

Step 2. We compute the partial derivatives
∂J

∂εβ

of the function

J(ε) =
∫
Γ0,t0

Lσ

(
x(t) + ελyλ(t),

∂x

∂tγ
(t) + ελ ∂yλ

∂tγ
(t)
)

dtσ

and we write

0 =
∂J

∂εβ
(0) =

∫
Γ0,t0

(
∂Lσ

∂xi
(x(t), xγ(t))yi

β(t)

+
∂Lσ

∂xi
γ

(x(t), xγ(t))
∂yi

β

∂tγ
(t)

)
dtσ.

To process this formula we use the conditions for
variations, writing

0 =
∫
Γ0,t0

(
∂Lσ

∂xi
yi

β +
∂Lσ

∂xi
γ

∂yi
γ

∂tβ

)
dtσ

=
∫
Γ0,t0

(
∂Lβ

∂xi
yi

σ +
∂Lβ

∂xi
γ

∂yi
γ

∂tσ

)
dtσ

=
∫
Γ0,t0

(
∂Lβ

∂xi
δγ
σ −

∂

∂tσ
∂Lβ

∂xi
γ

)
yi

γdtσ

+
∫
Γ0,t0

∂

∂tσ

(
∂Lβ

∂xi
γ

yi
γ

)
dtσ.

Step 3. Since the 1-forms(
∂Lβ

∂xi
δγ
σ −

∂

∂tσ
∂Lβ

∂xi
γ

)
dtσ

must be pullbacks of some 1-formsd(Aγ
βi), we can

evaluate the first curvilinear integral using the formula

∂

∂tγ
(yid(Aγ

βi)) =
∂yi

∂tγ
d(Aγ

βi) + yi ∂

∂tγ
d(Aγ

βi).

One obtains
∫
Γ0,t0

yi ∂

∂tγ
d(Aγ

βi) = 0, for all vari-

ations yi
γ with yi(0) = 0, yi(t0) = 0, yi

α(0) =
0, yi

α(t0) = 0 satisfying (CI)1 and for all curves
Γ0,t0 in the curvilinear integrals. Consequently,
∂

∂tγ

(
∂Lβ

∂xi
δγ
σ −

∂

∂tσ
∂Lβ

∂xi
γ

)
= 0. Therefore the(E −

L)1 PDEs hold for all multi-timest ∈ Ω0,t0 .
Remark. There are two other ways to process

the previous formula, but finally they are inconvenient
because of the complete integrability conditions:
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1) the creation of a divergence operator, used usu-
ally in the variational calculus for multiple integrals,

∫
Γ0,t0

(
∂Lσ

∂xi
− ∂

∂tγ
∂Lσ

∂xi
γ

)
yi

βdtσ

+
∫
Γ0,t0

∂

∂tγ

(
∂Lσ

∂xi
γ

yi
β

)
dtσ;

2) the introduction a procedure suggested by our
multi-time maximum principle theory, based on the

idea
∂yi

β

∂tγ
=

∂yi
γ

∂tβ
, namely

0 =
∫
Γ0,t0

(
∂Lσ

∂xi
δγ
βyi

γ +
∂Lσ

∂xi
γ

∂yi
β

∂tγ

)
dtσ

=
∫
Γ0,t0

(
∂Lσ

∂xi
δγ
βyi

γ +
∂Lσ

∂xi
γ

∂yi
γ

∂tβ

)
dtσ

=
∫
Γ0,t0

(
∂Lσ

∂xi
δγ
β −

∂

∂tβ
∂Lσ

∂xi
γ

)
yi

γdtσ

+
∫
Γ0,t0

∂

∂tβ

(
∂Lσ

∂xi
γ

yi
γ

)
dtσ.

3 Multiple integral functional and
gradient variations

Assume we are given a smoothLagrangian

L(x(t), xγ(t)), t ∈ Rm
+ .

We fix the multi-timet0 ∈ Rm
+ , the parallelepiped

Ω0,t0 ⊂ Rm
+ with the diagonal opposite points

0(0, ..., 0) and t0 = (t10, ..., t
m
0 ), and two points

x0, x1 ∈ Rn.. We introduce a new problem of the cal-
culus of variations asking to find anm-sheetx∗(·) :
Ω0,t0 → Rn that minimizes the functional (multiple
integral)

J(x(·)) =
∫
Ω0,t0

L(x(t), xγ(t))dt1...dtm,

among all functionsx(·) satisfying the conditions
x(0) = x0, x(t0) = x1, using gradient variation func-
tions (satisfying not only usual boundary conditions
but also the complete integrability conditions).

Fundamental question: how can we character-
ize that functionx∗(·) which is the solution of the pre-
vious variational problem?

Theorem 2 (multi-time non-homogeneous
Euler-Lagrange PDEs). If the m-sheetx∗(·)
minimizes the functionalJ(x(·)) in the previous

sense, thenx∗(·) is a solution of the multi-time
non-homogeneous Euler-Lagrange PDEs

∂L

∂xi
− ∂

∂tγ
∂L

∂xi
γ

= ci, i = 1, ..., n, γ = 1, ...,m.

(E − L)2
Here we have a system ofn second order PDEs

with n unknown functionsxi(·). Theorem 2 shows
that if we can solve the(E − L)2 PDEs system, then
the minimizer of the functionalJ (assuming it exists)
will be among the solutions.

Proof. Step 1. Select a smooth gradient variation
yα : Ω0,t0 → Rnm, yi

α|∂Ω0,t0
= 0 with the primitive

y : Ω0,t0 → Rn, yi|∂Ω0,t0
= 0. We add the complete

integrability conditions

∂yi
β

∂tγ
=

∂yi
γ

∂tβ
. (CI)2

Define the parameterε = (ε1, ..., εm) and

J(ε) = J(x(·) + εβyβ(·)),

for ε ∈ Rm and we writex(·) = x∗(·), i.e., we omit
the superscript∗.

We remark that the perturbed functionx(·) +
εβyβ(·) takes the same values asx(·) at the boundary
of Ω0,t0 . Sincex(·) is a minimizer, we can write

J(ε) ≥ J(x(·)) = J(0).

In this way, the functionJ(ε) has a minimum at the
point ε = 0, and consequently this must be a critical

point, i.e.,
∂J

∂εβ
(0) = 0.

Step 2. We compute the partial derivatives
∂J

∂εβ

of the function

J(ε) =
∫
Ω0,t0

L

(
x(t) + ελyλ(t),

∂x

∂tγ
(t)

+ ελ ∂yλ

∂tγ
(t)
)

dt1...dtm,

and we put
∂J

∂εβ
(0) = 0 or

0 =
∫
Ω0,t0

(
∂L

∂xi
(x(t), xγ(t))yi

β(t)

+
∂L

∂xi
γ

(x(t), xγ(t))
∂yi

β

∂tγ
(t)

)
dt1...dtm.
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To process this formula we use the conditions
(CI)2 for the variations, writing

0 =
∫
Ω0,t0

(
∂L

∂xi
yi

β +
∂L

∂xi
γ

∂yi
γ

∂tβ

)
dt1...dtm

=
∫
Ω0,t0

(
∂L

∂xi
δγ
β −

∂

∂tβ
∂L

∂xi
γ

)
yi

γdt1...dtm

+
∫
Ω0,t0

∂

∂tβ

(
∂L

∂xi
γ

yi
γ

)
dt1...dtm.

The last integral is evaluated by the Fubini formula.
The first integral can be modified via Gauss formula
since

∂

∂tγ
(yiBγ

βi) =
∂yi

∂tγ
Bγ

βi + yi ∂

∂tγ
Bγ

βi

Bγ
βi =

∂L

∂xi
δγ
β −

∂

∂tβ
∂L

∂xi
γ

.

Step 3. It remains

∫
Ω0,t0

yi ∂

∂tγ

(
∂L

∂xi
δγ
β −

∂

∂tβ
∂L

∂xi
γ

)
dt1...dtm.

This equality holds for all differentiable variationsyi

with yi|∂Ω0,t0
= 0. Therefore

∂

∂tγ

(
∂L

∂xi
δγ
β −

∂

∂tβ
∂L

∂xi
γ

)
= 0

and consequently the multi-time(E−L)2 PDEs hold
for t ∈ Ω0,t0 .

4 Properties of multi-time Euler-
Lagrange operator

4.1 Affine changing of the Lagrangian
Suppose thatL(t, x(t), xγ(t)), t ∈ Rm

+ is a smooth
Lagrangian. The following Lemma is well-known.

Lemma 3. The Euler-Lagrange derivative
EL(L) is independent of the partial accelerationsxαβ

if and only if the LagrangianL is an affine function
in velocities, i.e.,L(t, x(t), xγ(t)) = W (t, x(t)) +
Aα

i (t, x(t))xi
α.

Let us consider the homogeneous Euler-Lagrange
PDEs system

∂L

∂xi
− ∂

∂tγ
∂L

∂xi
γ

= 0, i = 1, ..., n, γ = 1, ...,m (1)

together with the non-homogeneous Euler-Lagrange
PDEs system

∂L

∂xi
− ∂

∂tγ
∂L

∂xi
γ

= ci, i = 1, ..., n, γ = 1, ...,m.

The non-homogeneous Euler-Lagrange PDEs system
becomes homogeneous if the LagrangianL is re-
placed by

L̂(t, x(t), xγ(t)) = L(t, x(t), xγ(t)) + W (t, x(t))

+Aα
i (t, x(t))xi

α,

where

(
∂Aγ

i

∂xj
−

∂Aγ
j

∂xi
)xi

γ −
∂Aγ

j

∂tγ
+

∂B

∂xj
= cj .

A particular solution isW = 0, Aα
i = − 1

mcit
α.

Combining the previous remarks with some for-
mulas in Sections 2-3, we obtain the following

Theorem 4. The Euler-Lagrange operatorEL
has the property

EL(L̂, h) = EL(L,∇h),

whereh stands for standard variations.
Therefore, the non-homogeneous Euler-Lagrange

PDEs system (which originally was obtained from
L using gradient variations) is a homogeneous sys-
tem for the modified Lagrangian̂L and the standard
variations. From another point of view, the non-
homogeneous Euler-Lagrange PDEs system is acon-
trolled Lagrangian systemfor a constant control [1].

Open problem. What is the sense of affine
changing of classical Lagrangians? What is the sense
of homographic changing of classical Lagrangians?
When the gradient variations are adequate?

4.2 Anti-trace multi-time Euler-Lagrange
PDEs

The statements in Sections 2-3 suggest to introduce
theanti-trace multi-time Euler-Lagrange PDEs

∂L

∂xi
δγ
β −

∂

∂tβ
∂L

∂xi
γ

= 0,

as generalizations of classical homogeneous Euler-
Lagrange PDEs. But, while the classical homoge-
neous Euler-Lagrange equations are invariant with re-
spect to changes of variables(t, x) → (t

′
, x

′
), the

anti-trace multi-time Euler-Lagrange PDEs are invari-

ant only with respect to(t, x) → (tα
′

= aα
β tβ +

bα, x
′
).
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Let us consider theanti-trace procedureas an al-
gebraic operator applied to Euler-Lagrange operators.
Looking for the inverse operator, we discovered two
inverses: one algebraic and one differential.

Theorem 5. 1) The trace followed by a fibre scal-
ing is an algebraic inverse of the anti-trace procedure.

2) The divergence is a differential inverse of the
anti-trace procedure.

Proof. 1) If we start with anti-trace multi-time
Euler-Lagrange PDEs, by the trace afterβ, γ and by
scaling the partial velocities, in the sense of changing
the Lagrangian after the rule

L(t, x(t), xγ(t)) = L1(t, x(t),mxγ(t)),

we obtain the classical Euler-Lagrange PDEs associ-
ated to the new LagrangianL1.

2) Applying the divergence operator to anti-trace
multi-time Euler-Lagrange PDEs, i.e.,

∂

∂tγ

(
∂L

∂xi
δγ
β −

∂

∂tβ
∂L

∂xi
γ

)
= 0,

we find
∂L

∂xi
− ∂

∂tγ
∂L

∂xi
γ

= ci.

Consequently the divergence and the anti-trace proce-
dure are related as ”the primitive with the derivative”.

4.3 New conservation law in case of multiple
integrals

We start with the autonomous Lagrangian
L(x(t), xγ(t)) and the associated homogeneous
Euler-Lagrange PDEs (1). Given the m-sheetx(·), let
us introduce themulti-momentump = (pα

i ) by the re-

lationspα
i (t) =

∂L

∂xi
α

(x(t), xγ(t)). Suppose that these

nm equations definenm functionsxi
γ = xi

γ(x, p).
Sometimes, the variablesx andp are calledcanonical
variables. We define two tensor fields:

− anti-trace Euler-Lagrange tensor field,

Aα
βi(x, xγ) =

∂L

∂xi
(x, xγ)δα

β −
∂

∂tβ
∂L

∂xi
α

(x, xγ),

− energy-momentum tensor field

Tα
β (x, p) = pα

i xi
β(x, p)− L(x, p)δα

β .

These tensor fields represent conservation laws for
Euler-Lagrange PDEs (1) since

∂

∂tα
Aα

βi = 0,
∂

∂tα
Tα

β = 0

along the solutions of (1). While the second law is
well-known, the first is new and it appears from the
anti-trace idea.

4.4 New conservation laws and anti-trace
PDEs in case of curvilinear integrals

When we use path independent curvilinear integral
functionals, we have similar properties. But, a smooth
Lagrangian L(x(t), xγ(t)), t ∈ Rm

+ produces two
smooth completely integrable 1-forms:

- the differential

dL =
∂L

∂xi
dxi +

∂L

∂xi
γ

dxi
γ

of components(
∂L

∂xi
,

∂L

∂xi
γ

), with respect to the basis

(dxi, dxi
γ);

- the restriction ofdL to (x(t), xγ(t)), i.e., the
pullback

dL|(x(t),xγ(t)) =

(
∂L

∂xi

∂xi

∂tβ
+

∂L

∂xi
γ

∂xi
γ

∂tβ

)
dtβ ,

of components

Lβ(x(t), xγ(t)) =
∂L

∂xi
(x(t), xγ(t))

∂xi

∂tβ
(t)

+
∂L

∂xi
γ

(x(t), xγ(t))
∂xi

γ

∂tβ
(t),

with respect to the basis(dtβ). In this case, we must
underline that we have two different anti-trace Euler-
Lagrange tensor fields

Aγ
αβi(x, xλ) =

∂Lα

∂xi
(x, xλ)δγ

β −
∂

∂tβ
∂Lα

∂xi
γ

(x, xλ)

Bγ
βαi(x, xλ) =

∂Lβ

∂xi
(x, xλ)δγ

α −
∂

∂tβ
∂Lα

∂xi
γ

(x, xλ),

since the following Theorem is true.
Theorem 6. The relations

∂

∂tβ
∂Lα

∂x
− ∂

∂tα
∂Lβ

∂x
= 0

∂

∂tβ
∂Lα

∂xγ
− ∂

∂tα
∂Lβ

∂xγ
= (δλ

αδγ
β − δλ

βδγ
α)

∂

∂tλ
∂L

∂x

∂

∂tγ
Aγ

αβi(x, xλ) =
∂

∂tγ
Bγ

βαi(x, xλ)

hold true.
The first relation can be written as a conservation

law
∂

∂tλ
(
∂Lα

∂x
δλ
β −

∂Lβ

∂x
δλ
α) = 0
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or as

∂Lα

∂x
δλ
β −

∂Lβ

∂x
δλ
α = (

∂

∂tα
δλ
β −

∂

∂tβ
δλ
α)

∂L

∂x
.

It implies the third relation between anti-trace multi-
time Euler-Lagrange operators. Furthermore, the ten-
sor fieldsAγ

αβi(x, xλ), Bγ
βαi(x, xλ) represent equiv-

alent conservation laws for the homogeneous Euler-
Lagrange PDEs

∂Lα

∂xi
− ∂

∂tγ
∂Lα

∂xi
γ

= 0. (2)

Indeed, their difference is a tensor of ”curl” type and

∂

∂tγ
Aγ

αβi(x, xλ) = 0,
∂

∂tγ
Bγ

βαi(x, xλ) = 0

along the solutions of (2).
Starting from the Euler-Lagrange PDEs (2), we

introduce:
1) the first kind of anti-trace multi-time Euler-

Lagrange PDEs

∂Lα

∂xi
(x, xλ)δγ

β −
∂

∂tβ
∂Lα

∂xi
γ

(x, xλ) = 0;

2) thesecond kind of anti-trace multi-time Euler-
Lagrange PDEs

∂Lβ

∂xi
(x, xλ)δγ

α −
∂

∂tβ
∂Lα

∂xi
γ

(x, xλ) = 0.

Both anti-trace procedures have the same differ-
ential inverse (divergence), but different algebraic in-
verses (the first, trace followed by a fibre scaling; the
second, the trace). Consequently, applying the diver-
gence, both imply the same controlled Euler-Lagrange
PDEs system

∂Lα

∂xi
− ∂

∂tγ
∂Lα

∂xi
γ

= cαi.

That is why, the solutions of anti-trace multi-time
Euler-Lagrange PDEs are among the solutions of the
controlled Euler-Lagrange PDEs.

5 Application in Multi-Time Rheo-
nomic Dynamics

Our theory has applications in Relativistic and Multi-
Time Rheonomic Dynamics; the electromagnetic field
E = (Ei), H = (H i), i = 1, 2, 3 determines the
density of electromagnetic deformation energy

L =
1
2
δijδ

αβ

(
∂Ei

∂tα
∂Ej

∂tβ
+

∂H i

∂tα
∂Hj

∂tβ

)
,

wheret1 = x, t2 = y, t3 = z, t4 = it. The extremals
of L under gradient variations are described by the
controlled wave PDEs

∆Ei − ∂2Ei

∂t2
= bi, ∆H i − ∂2H i

∂t2
= ci, i = 1, 2, 3.

6 Conclusion
The present point of view regarding the multi-time
Euler-Lagrange PDEs has the key ideas in the union
between [3]-[8] and [1], [2]. Accepting that the evolu-
tion is m-dimensional, all the results confirm the pos-
sibility of passing from the single-time Pontryaguin’s
maximum principle to a multi-time maximum princi-
ple [4]-[8]. Furthermore, the main results belong to
PDEs-constrained optimal control theory.
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