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Abstract: Decision tree learning represents a well known family of inductive learning algorithms that are able to
extract, from the presented training sets, classification rules whose preconditions can be represented as disjunctions
of conjunctions of constraints. The name of decision trees is due to the fact that the preconditions can be repre-
sented as a tree where each node is a constraint and each path from the root to a leaf node represents a disjunction
composed from a conjunction of constraints, one constraint for each node from the path. Due to their efficiency,
these methods are widely used in a diversity of domains like financial, engineering and medical. The paper pro-
poses a new method to construct decision trees based on reinforcement learning. The new construction method
becomes increasingly efficient as it constructs more and more decision trees because it can learn what constraint
should be tested first in order to accurately and efficiently classify a subset of examples from the training set.
This feature makes the new method suitable for problems were the training set is changed frequently and also the
classification rules can support slightly changes over time. The method is also effective when different constraints
have different testing costs. The paper concludes with performance results and with a summary of the features of
the proposed algorithm.
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1 Introduction

Decision tree learning is a widely used class of meth-
ods for inductive inference. They approximate dis-
crete valued target functions by representing them as
decision trees. The instances presented as arguments
for these functions are represented as collections of at-
tribute value pairs. In accordance with [4], a decision
tree represents a disjunction of conjunctions of con-
straints on the attribute values of the instances. Each
node from the tree represents a test regarding the value
of an attribute (or more attributes), each path starting
from the tree’s root to a leaf corresponds to a con-
junction of attribute tests and the tree synthesizes the
disjunction of these conjunctions. Consequently, a de-
cision tree can be considered to be a collection of for-
mulas from propositional logic and decision trees nat-
urally represent disjunctive expressions.

Several efficient decision tree building algorithms
like ID3 [5], C4.5 [6] and QUEST[3] were proposed
over time, most of them being top down, simple to
complex, greedy algorithms. They begin with the
question ”What constraint should be tested in the root
of the decision tree?” and evaluate the available con-
straints in accordance with a statistical test to select
the best one. A descendent of the root node is created

for each value of this constraint and the entire process
is then repeated for each descendant. Due to their
accuracy, effectiveness and flexibility, decision trees
were successfully applied to a wide range of learning
problems from various domains like medical, finan-
cial and engineering. A comprehensive survey of the
current developments in decision tree learning theory
is [8].

The paper proposes a new method to build de-
cision trees that uses reinforcement learning to se-
lect the attributes to be tested inside the nodes of the
tree. Reinforcement learning ([9], [4]) was selected
because it allows that the method to build better trees
over time as it learns from the feedback provided by
the previous building operations. Several statistical
tests can be employed to describe the classification
power of the attributes and their importance will be
weighted in accordance with the accuracy of their re-
sults during learning. It can learn over time which
attribute is more suitable to be tested for classifying
a subset of examples and it can transfer the learned
knowledge about an attribute to another attribute with
similar discrimination characteristics. The knowl-
edge can be transferred also when the training set is
changed frequently and even when the classification
rules can support changes over time. The situations
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when different attributes have different test costs can
be handled by the proposed method. We mention that
decision trees were commonly used in relational rein-
forcement learning [7] but the reverse situation where
reinforcement learning is used to build decision trees
received little attention until now.

The rest of the paper begins by describing the
mathematical framework for a generic classification
problem and the fundamentals of the reinforcement
learning algorithms. The main part of the paper in-
troduces the new method to adaptively build decision
trees by reinforcement learning and discusses its prop-
erties. We conclude with experimental results for the
proposed method on a small problem and with a syn-
thesis of the desired features of the exposed algorithm.

2 Adaptive learning of a classifier for
a generic classification problem

2.1 Framework
Let E be the set of elements that should be classified.
The elements of E are described by a set of attributes
Attr. Each attribute at ∈ Attr has attached a function

at(.) : E → V al(at)

where V al(at) is the set of the all possible values of
the attribute at. An element e ∈ E is uniquely identi-
fied by the set of pairs

{< at, at(e) > |at ∈ Attr}.

The function at(.) can be extended to subsets of ex-
amples as follows:

at(.) : 2E → V al(at)

where

at(E) = arg max
v∈V al(at)

|{e ∈ E|at(e) = v}|

is the dominant value of the attribute at over the set
E.

Let C be the finite set of the categories of the ele-
ments from E . A classifier for E is a function

c : E → C.

Usually, the function c is not known. Instead, we
have a subset of examples Ex ⊆ E for that the val-
ues c(ex), ∀ex ∈ Ex are available. Our purpose is to
build an approximation

c∗ : E → C.

for c based on the examples from Ex.
For each attribute at ∈ Attr, an equivalence re-

lation =at⊆ Ex × Ex will be defined as follows:
(ex1, ex2) ∈=at if and only if at(ex1) = at(ex2).
Let X ⊆ Ex a set of examples and ex ∈ X an ex-
ample. By [ex]X,at will be denoted the equivalence
class

[ex]X,at = {x ∈ X|at(ex) = at(x)}.
The set of all equivalence classes in X given the
equivalence relation =at is denoted as X/ =at and
called the quotient set of X by =at. Sometimes
X/ =at will be denoted by

X/=at = {Xat=v1 , ..., Xat=vm}
where V al(at) = {v1, ..., vm}.

Similarly, equivalence classes can be defined for
the target function c. Let us denote by [ex]X the
equivalence class of ex

[ex]X = {x ∈ X|c(ex) = c(x)}.
The set of the all equivalence classes in X given c will
be denoted as X/c.

X/c = {Xc=c1 , ..., Xc=cp}
where C = {c1, ..., cp}.

2.2 Reinforcement learning
Let us consider a problem where an agent interacts
with an environment. The problem is described by the
following parameters:

• S The set of the all possible states of the envi-
ronment. In the most cases the agent has only
partial information about the current state of the
environment. Usually, a subset of states F ⊆ S
is also known. The elements of F are named fi-
nal states.

• A The actions that are available to the agent. For
a state s ∈ S of the environment we denote by
A(s) ⊆ A the set of the actions that can be per-
formed in the state s.

• T : S × A → P(S) where P(S) represents
the family of the probability distributions over S.
The agent has not a complete control over envi-
ronment. When it performs an action a in a state
s it does not completly know which will be the
next state of the environment. T (s, a, s′) repre-
sents the probability that s′ ∈ S to be the next
state when the action a is performed in the state
s.
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• r : S × A → R. The one step reward function.
The learning agent is partially supervised. It is
informed by rewards about what action is good
in what state. r(s, a) represents the reward that is
received by the agent after it performs the action
a in the state s.

A policy π is a function that maps states into prob-
ability distributions over the set of actions. A trajec-
tory is a sequence of states, actions and rewards con-
structed based on a policy as follows. Let s0 be the
initial state of the trajectory. An action a0 is cho-
sen in accordance with π(s0). The one step reward
r0 = r(s0, a0) granted for the pair (s0, a0) is ob-
served. The new state of the environment s1 is depen-
dent on the environment dynamics described by the
function T . If s1 is a final state, the trajectory is com-
pleted, otherwise the process continues iteratively.

The action value function or, alternately, the Q
function, measures, for the value Qπ(st, a), the ex-
pected total reward that will be obtained by executing
the action a in the state st and following the policy
π(.) to select the actions for the next states. The func-
tion Q that corresponds to a policy π(.) is defined by:

Qπ(st, at) ≡ rt + γQπ(st+1, π(st+1)). (1)

γ ∈ (0, 1] is a parameter that quantify how important
are the rewards received during the later interactions
between agent and environment. The advantage pro-
vided by the Q function is that the agent can perform
an one step search of the optimal action without to
be needed to know the one step reward function and
the dynamics of the environment. If the agent knows
the optimal Q function, denoted by Q∗, which corre-
sponds to the optimal policy π∗, then it can select the
optimal action by using the search:

a∗t = π∗(st) = arg max
at∈A(st)

{Q∗(st, at)}. (2)

The optimal Q function can be computed by using the
dynamic programming if the one step reward function
and the dynamics of the environment are completely
known in advance. But even in this case the spaces
of the states and actions can be to big to accurately
compute the value Q∗(s, a) for each state action pair
(s, a). So, in most cases, a method to approximate the
Q∗ function is preferred. Reinforcement learning the-
ory proposes several such methods like SARSA and
Q-learning [9].

2.3 Building decision trees using reinforce-
ment learning

In order to apply the reinforcement learning to the
generalized classification problem we should identify

the components of the reinforcement learning frame-
work in the classification settings.

• The set of states S is the family of the all par-
titions of the set of examples. A state s ∈ S
is a set s = {s1, ..., sn} such that si ∩ sj = ∅,

∀i, j ∈ {1, ..., n}, i 6= j and
n⋃

i=1
si = Ex. A

state s = {s1, ..., sn} is named final if and only
if si/c = {si}, ∀i = 1, n (all examples from si

are classified in the same category). The family
of the all final states will be denoted by F (S).

• Let s = {s1, ..., sn} ∈ S be a state. The set of
actions A(s) that can be performed in the state s
is the set A(s) = Attr × {1, ..., n}. An action is
a pair (at, i) with the meaning that the attribute
at will be used to further classify the subset of
examples si.

• Let s = {s1, ..., sn} ∈ S a state and
a = (at, i) ∈ A(s) an action. The
next state s′ of the environment after per-
forming action a in the state s will be
s′ = {s1, ..., si−1, siv1

, ..., sivm
, si+1, ..., sn}

where {siv1
, ..., sivm

} = si/=at . This can be
also stated as:

s′ = (s \ {si}) ∪ si/=at .

• For the reward function we will set r(s, a) = −1,
∀s /∈ F (S) and ∀a ∈ A(s) and r(s, a) = 0 oth-
erwise. This definition of the reward function is
intended to encourage the completion of the de-
cision tree building process in a minimum num-
ber of steps (with a minimum number of internal
nodes). If the attributes have different test costs
we can represent this feature naturally by using
different rewards for different attributes.

The number of the all possible partitions of the set
of examples Ex is too big, and consequently, the val-
ues of the function Q(s, a) that approximates Q∗(s, a)
cannot be maintained by using a table. Q will be rep-
resented as a parameterized functional form with the
parameter vector θ = (θ1, ..., θk) ∈ Rk. To make the
computations simpler, Q will be a linear function of
the parameter vector θ. For every pair (s, a), there is a
vector of features φ(s, a) = (φ(s,a)

1 , ..., φ
(s,a)
k )T ∈ Rk

with the same number of components as θ. The ap-
proximate action value function is given by

Q(s, a) = θ · φ(s, a) =
k∑

i=1

θiφ
(s,a)
i
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Algorithm 1 ADAPTTREE0(Ex, Attr) - an adap-
tive algorithm for constructing decision trees. The al-
gorithm uses linear gradient descendent SARSA with
tile coding features and ε-greedy policy.
Require: Ex 6= ∅, α ∈ (0, 1] a parameter named

learning rate, γ ∈ (0, 1) a parameter that estab-
lishes how important are the rewards received in
the future.

1: Initialize s = {Ex}.
2: Create the root node of the tree attached to unique

set Ex from partition.
3: a, φ(s, a), Q(s, a) ← ε−Greedy(s). {Choose an

action a ∈ A(s) in accordance with the ε-greedy
policy based on Q.}

4: repeat
5: Let s = {s1, ..., sn}, a = (at, i) ∈ A(s) and

nsi the node in the tree attached to the set si

from the partition s.
6: for each sivj

∈ si/=at do
7: Create a new node nsivj

attached to sivj
and

add a new branch in the tree from nsi to nsivj

labeled with the test at(.) = vj .
8: end for
9: Perform the action a, observe the next state s′

and the reward r
10: δ ← r −Q(s, a)
11: a′, φ(s′, a′), Q(s′, a′) ← ε − Greedy(s′).

{Choose an action a′ ∈ A(s′) in accordance
with the ε-greedy policy based on Q.}

12: δ ← δ + γQ(s′, a′)
13: θ ← θ + αδφ(s, a)
14: s ← s′, a ← a′.
15: until s ∈ F (S)

and the resulting method is synthesized in the algo-
rithms 1 and 2. The features will be constructed as
follows:

φ : S ×A → Rk, φ(s, a) = f(g(s, a)).

The function g : S × A → Rl+1 transforms a state
action pair (s, a) into an array of real number because
the majority of the function approximation methods
are devised to work with numeric arguments. The val-
ues associated by the g function must synthesize both
the status of the learning process in the current state s
and the discrimination capabilities of the selected ac-
tion a. The status of the learning process is described
by computing the entropy function over the subsets of
the partition s. As the learning process advances, the
entropy of the subsets of s should become smaller be-

Algorithm 2 ε − Greedy(s) selects an action a ∈
A(s) for the state s using the ε− greedy strategy.
Require: The exploration probability ε ∈ [0, 1].

1: if With probability 1− ε then
2: for all a ∈ A(s) do
3: φ(s, a) ← the vector of features for the pair

(s, a)

4: Q(s, a) ←
k∑

i=1
θiφ

(s,a)
i

5: end for
6: a ← arg maxa Q(s, a)
7: else
8: a ← a random action ∈ A(s)
9: φ(s, a) ← the vector of features for the pair

(s, a)

10: Q(s, a) ←
k∑

i=1
θiφ

(s,a)
i

11: end if
12: return a, φ(s, a), Q(s, a)

cause, finally, each subset will contain examples from
only one category. In order to accurately describe the
effects of an action a, the definition of g is also based
on some of the most known measures for assessing the
classification qualities of an attribute [8].

g(s, a) = (g0(s), g1(s, a), ..., gl(s, a)) where

g0 : S → R and gi : S ×A → R,∀i, 1 ≤ i ≤ l.

Let s ∈ S be s = {s1, ..., sn} and a ∈ A(s) be
a = (at, i). The function g0 describe the status of the
learning process in the current state s (the progress of
the classification of the training set) and is defined as
follows:

g0(s) =
n∑

i=1

|si|
|Ex| · Entropy(si)

where the entropy function is defined by:

Entropy(X) = −
p∑

i=1

|Xc=ci |
|X| log2

|Xc=ci |
|X| ,

∀X ⊆ Ex.
The functions gi, 1 ≤ i ≤ l describe the classifi-

cation effects of the actions. During tests, the follow-
ing functions gi were used:

a) Information gain function

g1({s1, ..., si, ..., sn}, (at, i)) = Entropy(si)

−
∑

siv∈si/=at

|siv |
|si| Entropy(siv).
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b) Gini index

g2({s1, ..., si, ..., sn}, (at, i)) = Gini(si)

−
∑

siv∈si/=at

|siv |
|si| Gini(siv)

where

Gini(s) = 1−
p∑

i=1

( |sc=ci |
|s|

)2

c) Discriminant power function

g3({s1, ..., si, ..., sn}, (at, i)) =

∑
siv∈si/=at

(
1

|siv /c| · |siv |
)

|si|
The function g3 assigns to each pair (s, a) a num-
ber in the range (0, 1].

Remark 1 It is difficult to choose between the various
measure functions that can be used to select the next
attribute used in the tree construction process. Several
studies ([1], [2]) suggest that the most functions that
evaluate the power of discrimination of an attribute
regarding to a set of examples have similar perfor-
mances. Each criterion is superior in some cases and
inferior in others. The proposed adaptive tree induc-
tion method has the advantage that allows us to use
several splitting criteria. During the adaptive process
each criterion will gain or lose importance according
with its performances.

Several function approximation methods includ-
ing artificial neural networks and linear methods,
which are well suited for reinforcement learning, can
be used to define the function f . In our tests, f :
Rl+1 → Rk was defined by using the tile coding
method ([9]) with k the number of used layers of
tiles. Finally, we should point that the usage of an
approximation for Q∗ has another advantage: knowl-
edge can be transferred between similar (s, a) pairs.
Consequently, the newly encountered (s, a) pairs can
be evaluated based on the old ones.

2.4 Experimental results
Let us consider E = {True, False}7, the target func-
tion c : E → {True, False},

c(A0, A1, A2, A3, A4, A5, A6) = (A0 ∧A1 ∧A2)
∨ (A0 ∧A1 ∧A3) ∨ (A0 ∧A1 ∧A4) ∨ (A5 ∧A6)

Figure 1: The decision tree constructed for the test
target function by the ID3 algorithm.

and the set of training examples Ex = E . With these
settings, the ID3 algorithm creates the decision tree
depicted in the figure 1, which has 12 internal nodes,
13 leaf nodes and the maximum path depth 8.

Let us apply now the ADAPTTREE0 algo-
rithm on same problem. The following configuration
was used:

Parameter Value
α (learning rate) 1

1+log2(episode+1)

ε (exploration rate) 1
1+log2(episode+1)

γ (future rewards gain) 0.9
k (layers of tiles) 32
Tile coding memory 512 entries

where episode indicates the number of the training
episode. The decision tree that resulted is presented
in the figure 2. It has 11 internal nodes and 12 leaf
nodes and the maximum path depth 8 so it performs
better than ID3, which uses only the information gain
function in a greedy approach to build the tree. This
shows that ADAPTTREE0 was able to establish
better than ID3 what combination of discrimination
features of an attribute makes it suitable to split a sub-
set of examples.

The evolution of the decision trees built by
ADAPTTREE0 algorithm during 200 training
episodes is illustrated in the figure 3. It can be ob-
served that the number of internal nodes and the num-
ber of leaf nodes stabilize quickly on the optimal val-
ues: 11 internal nodes and 12 leaf nodes.
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Figure 2: The decision tree constructed for the test
target function by the ADAPTTREE0 algorithm.

3 Conclusion
The paper proposes a new method based on rein-
forcement learning to adaptively build decision trees.
The adaptive capabilities of the reinforcement learn-
ing provide us the following desired features. Several
statistical tests can be used to asses the classification
capabilities of the attributes. The method will learn
which of them are the most suitable for the current
problem. Also, any other methods to represent par-
titions over the set of examples and constraints over
examples can be used if they allow us to have suffi-
cient capabilities to discriminate between the various
(partition, constraint) pairs. The method can make use
of previously learned knowledge even when the train-
ing set and the target function are changing over time.
Due to its permanent exploration capacities, reinforce-
ment learning is able to detect the changes in the char-
acteristics of the training set and target function. The
usage of an approximation method for Q∗ makes pos-
sible to transfer knowledge from already encountered
partition - splitting constraint pairs to the newly en-
countered ones. By using different values for the re-
inforcement learning rewards, the method can be ap-
plied when different constraints have different testing
costs because reinforcement learning tries to maxi-
mize the sum of the rewards received during a training
episode. Possible future directions of research include
the extension of the method to work in collaborative
environments and to evaluate the classification power
of the sequences of attributes.

Figure 3: The evolution of the training process for the
ADAPTTREE0 algorithm.
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