
A Bottom-up Parser where Entire Operation is Conducted
 in the Letter String Region

Hiroshi Sakaki Takashi Tanaka Michihiko Seki

Faculty of Informatics
Meisei University SCC Corporation Pro-log Corporation

2-590 Nagafuch Ohme-shi Tokyo 5-36-14 Nakano Nakano-ku 3-14-2-207 Amanuma Suginami-ku
Tokyo 198-8655 JAPAN Tokyo 164-0001 JAPAN Tokyo 167-0032 JAPAN

sakaki@ei.meisei-u.ac.jp tktanaka@scc-kk.co.jp pro-log@netjoy.ne.jp

Abstract: - This paper treats a natural language parser of bottom-up type. The characteristics of the parser lies in
that the data treated keep the shape of letter string through the entire parsing operations. Letter strings including
parentheses express the partial trees generated in the course of parsing. This expression helps to avoid list
expression usually used to represent trees.

Key-Words: - parser, bottom-up, letter string, machine translation, LINGOL, C language, OR node

1 Introduction

This paper concerns about chart parser proposed by
Martin Kay[1]. A chart parser utilizes a chart
composed of nodes representing word borders of input
sentence and arcs connecting those nodes. To each
arcs, the analysis result or intermediate structures
produced during analysis are tied.
 LINGOL is a control method of bottom-up parser.
This parser is improved into extended LINGOL[2][3].
On these basis, a parse control method in which plural
analysis results are bundled by special kind of node
called OR node is proposed. The bundling is effective
for saving memory and calculation task. A large scale
MT system called KATE that uses this bundle method
has been constructed. Here in this paper, parsing
method of this type is called KATE type parsing
method[4].
 Recently various types of parsers are proposed. The
ones similar to this paper’s method are Morawietz’s,
and Watanabe’s that utilize context information but do
not treat data in letter string region[5][6]. There are
many types utilizing stochastic information [7].

The parser proposed in this paper conducts
processing of intermediate structures entirely on letter
string region and still conforms to the KATE type
control method. The processing on letter string region
simplifies greatly calculation mechanism of parser.
2 Operation applied to partial trees

This chapter illustrates the operation applied to
partial trees tied to arcs.

The method of this paper uses 3 procedures called
procedure 1', procedure 1 and procedure 2, as
fundamental procedures. The following is the
description of these procedures.

KATE type parsing method deals with 2 kinds of
arcs one of which is active arc and the other of which
is inactive arc. An active arc represents a tree having
unsaturated nodes and an inactive arc represents a
complete tree. At an inactive arc, the kinds of
“category” to fill the unsaturated terms are designated.
The word "category" expresses grammatical category
including, in this paper, word names. The section of
existence of an arc on a chart is called "span". The
expression that the arc "spans" the section is also used.

Fig.1 Operation of procedure 1'
A context-free rewriting rule has one left-hand side

term and one or more right-hand side terms. The
graphical expression of a rewriting rule is a tree
composed of one upper node corresponding to the left-
hand side term and one or more lower nodes
corresponding to the right-hand side terms. Because of
above correspondence, the left-hand side term of
rewriting rule is called upper node and right hand side
terms are called lower nodes.

 The tree tied with an arc is said to be the label of the
arc. In this paper the terms "arc" and "label of arc"
designate the same object. Procedure 1' is the
procedure where a rewriting rule with single lower
node is applied to a inactive arc giving rise to a new
inactive arc. Fig.1 shows the application of procedure
1'. Fig.1(a) is generic expression of the process and
Fig.1(b) illustrate an example of the process. The

● ●
k n

+A

a

(a)

b

A

a

● ●
k n

● ●

1 2

can + (can)

AV

can

AV

(a) (b)

● ●
1 2

b

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 23

portion expressed by a triangle denotes a tree structure.
This tree structure has the name "A" and the topmost
node of the tree structure is the node "a".

First, Fig.1(a) is investigated. The portion to the left
of "+" sign is the inactive arc and the portion to the
right of "+" sign is the rewriting rule. The lower node
of rewriting rule is "(a)" indicating that the category to
fill the term is "a". The portion to the left of the arrow
is situation before the application of rewriting rule and
portion to the right is the result of application.

At procedures investigated hereafter, only the
topmost node of a tree or an inactive arc can fill the
term of a rewriting rule or an active arc. As a
consequence, the category of the topmost node of an
inactive arc is called the category of the inactive arc.

 Fig.2 Operation of procedure 1
Procedure 1 is the procedure where a rewriting rule

with more than one lower nodes are applied to a
inactive arc giving rise to a new active arc. Fig.2
shows the application of procedure 1. Fig.2(a) is
generic expression of the process and Fig.2(b)
illustrate an example of the process.

 The expression to the left of the "+" sign shows that
the tree with topmost node "c" is the label of the arc
spanning the section between nodes k and n. The
portion to the right of "+" sign is the rewriting rule
with 3 lower nodes.

 Fig.3 Operation of procedure 2
Filling in of unsaturated lower nodes proceeds at the

order of left to right. The lower node "(c)" shows that
this node must be filled with the category "c". The
application result is the tree construction representing
an active arc situated to the right of the arrow. In this
case the nodes "(d)" and "(e)" are unsaturated nodes
characteristic of an active arc. As the fixed portion at
the lower portions in the application result spans the
section between node k an n, the span of the active arc
obtained is between nodes k and n. In this paper, thin
lines express inactive arcs and thick lines express
active arcs. Fig.2(b) shows an example of application
of procedure 1.

Procedure 2 is the procedure where the unsaturated
term of an active arc existing to the left of boarder
node is filled with the topmost node of an inactive arc
existing to the right of the boarder node, generating an
arc. If the label of a newly produced arc has
unsaturated term, it become an active arc, otherwise it
become an inactive arc.

 Fig.3(a) is generic expression of the process. The portion
to the left of "+" sign is the active arc and portion to the right
is inactive arc. The border node is node "k". The lower node
"(d)" of the active arc shows that the category to fill the term
is category "d".

The application of procedure 2 generates an active
arc still having unsaturated term "e". This newly
generated tree has fixed portions spanning a section
between node x and node n. So the newly created
active arc spans between node x and n.Fig.3(b) is an
example of the application of procedure 2.

 Aggregation is the operation where plural inactive
arcs having identical span and identical topmost node
is bundled using special kind of node called node
"OR". The structure obtained by the application of
aggregation has the same span as the input of the
operation.

 Fig.4 Operation of aggregation
Fig.4 is generic expression of aggregation operation.

The label of 2 inactive arcs are trees G and H. As these
2 trees have identical span and topmost node, an
inactive arc is generated by aggregation operation.
The label of newly generated inactive arc is shown to
the right of the arrow. The original topmost nodes are
replaced by the OR nodes and, successibly, OR nodes
is bundled by the original topmost node. The span of
aggregation result is the same as that of original arcs.
After the aggregation operation, the original arcs are
deleted. The aggregation saves memory and
calculation task in parsing. Fig.4(b) is an example of
aggregation operation.
3 Flow chart to control parsing

Fig.5 contains the example sentence used to
illustrate the operation and rewriting rules to analyse
the sentence. Fig.5(1) through 5(9) are respectively
rewriting rules and Fig.5(10) is input sentence. The
lower nodes in rewriting rules are enclosed by

● ●
k n

g

● ●
k n

G
+

H G H

OR ORg

g

● ●
k n

VP

AV V

can

ADV

fast
produce

VP

V

can

ADV

fast
produce

NP

+

● ●
1 4

● ●
1 4

AV V

can

ADV

fast
produce

can

ADV

fastproduce

NP

OR

VP

V

OR

● ●
1 4

(a)

(b)

(a) (b)

VP

● ● ●
1 2 3

● ● ●

1 2 3

V

producecan

AV (ADV)

VP

V

producecan

AV

(V) (ADV)

+

● ● ●
k nx

● ● ●
k nx

EC EC

f

dc

(d) (e)
dc (e)

f

+

● ●

k n

+C

c

(a)

● ●
k n

C

c

(c) (d) (e)

f

f

VP

(AV) (V) (ADV)

● ●

1 2

can

AV

+
● ●
1 2

can

AV

VP

(b)

(d) (e)
(V) (ADV)

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 24

parenthesis to show that these nodes request the
category in the parenthesis.

Fig.6 is the flow chart of the parser controling
operation mentioned in last chapter. The parser
proposed in this paper comforms to KATE type
parsing method and consequently, the control flow
chart is shaped after KATE system. The characteristic
of parser of this paper, never-the-less lies in that entire
tree structural operation is conducted in letter string
ragion.

 Fig.5 Input sentence and rewriting rules
Descriptions for the portions composing the flow

chart is made here. Each portion of the flow chart has
its name and acronym. The portions which manipulate
the partial trees are "Process1'(P1)" for the operation
of procedure 1', "Aggregation(AG)" for aggregation,
"Process1(P2)" for prcedure 1, "Process2(P3)" for
procedure 2. Partial trees are pieces of analysed tree
for input sentence. The portions which controls
existence of arcs are "Inactive arc erasure(EA)"
erasing entire inactive arcs from the chart and "Word
input(WI)" introducing an inactive arc composed of
single word to the chart. The right end of the inactive
arc is set to the value of "n" parameter.

Fig.6 Flow chart of parser
Parameters "k" and "n" controls the operation of the

flow chart of Fig.6. Inactive arcs processed at the

portions P1, AG, P2 and P3 are limited to those having
span between n(left end) and k(right end). There is no
limitation for span of active arc.

Portions directing action of the parser are these 3
portions. "Commence parsing(CM)" initiate the action
of parsing. "Word existence(WE)" detects the
existence of word not introduced to the chart. If the
decision is "absent of word" the operation turns to the
"Analysis result(AR)". If decision is "present" the
operation continues on to EA. AR generates the
analyzed tree.

Fig.7 Labels of arcs generated in parsing

Fig.8 Arcs generated in parsing operation
Following portions concerns about designation of

parameter "k" and parameter "n". Portion of "n value
introduction(NI)" sets n value to 1 at the
commencement of parsing. Portion of "k value
introduction(IK)" sets the k value to n-1. Portion of
"Existence of arc with smaller left end value(KS)"
detects the existence of inactive arc having left end
whose position number is smaller than the present
value of "k". If there is no such inactive arc, the
operation shifts to portion of "n value increase(IN)"

Commence Parsing (CM)

Word Existence
 (WE)

Inactive arcs erasure (EA)

Word input (WI)

n value introduction (NI)

k value introduction (IK)

Analysis result (AR)

Process 1' (P1)

Process 1 (P2)

Process 2 (P3)

Aggregation (AG)

 Existence
of arc with smaller left end
 value (KS)

k value reduction (RK)

n value increase (IN)

k loop

n loop

no
yes

yes

no

NP

they (VP)

S

they

AV
can

V
can

VP

AV (V)

can

(ADV)

VP

V (NP)

can
(ADV)

V NP

VP

AV V

can

(ADV)

produce

V

produce

NP

produce

VP

can

(ADV)

produce

VP

AV V

can
ADV

finely
produce

VP

V NP
can

finely

ADV
produce

NP

VP

AV V

can

ADV

finelyproduce

V NP

can
finely

ADV
produce

OR OR

can finelythey produce

(a) (b) (c) (d) (e) (f) (g) (h)

(i) (j)
(k) (l)

(m) (n) (o) (p)

(q)

(r)

ADV

finely

S

they

VP

AV V
can

ADV

finely
produce

V
NP

can
finely

ADV

produce

OR OR

NP

(s)

(VP)

S

produce

NP

(t) (u)

VP

V (NP)

produce
(ADV)

0 1 2 3
● ● ● ●

4
●

0 1 2 3
● ● ● ●

4
●

a
e

f

f

b

g
h

i

0 1 2 3
● ● ● ●

4
●

f i
j

c
k
l

m

0 1 2 3
● ● ● ●

4
●

f
i

j

m
n

d

o

pq

0 1 2 3
● ● ● ●

4
●

f
i

j

m
n

d

o

rs

(1) (2) (3)

(4) (5)

n=1
n=2 n=3

n=4

k=3
n=4

k=0

j n

t

t t

u

u
u

NP

(they)

AV

(can)

V

(can)

V
(produce)

NP

(produce)

ADV

(fast)

(VP)

S

(NP)

VP

(AV) (V) (ADV)

VP

(V) (NP)

(1) (2) (3) (4) (5) (6)

(7) (8) (9)

they can produce finely(10)

(ADV)

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 25

that increases the "n" value by 1. If such inactive arcs
exist, operation turn to portion of "k value
reduction(RK)" which reduces k value to the left end
value of the inactive arc whose left end is leftmost
among those of inactive arcs.

The following is the survey of the parsing process
comforming to the flow chart in Fig.6 which utilizes 3
procedures shown in the last chapter. The case where
the sentence in Fig.5(10) is input and rewriting rules in
Fig.5(1) through (9) are used, is examined.

The inactive arcs and active arcs generated during
parsing process are displayed at the figures in Fig.8.
The labels of these arcs are illustrated in Fig.7. Here,
the label belonging to an arc is a tree in Fig.7 having
the sub-number identical to the arc name.

 The operation is expressed by the series of portions
in the flow chart of Fig.6 succeeded by the explanation
for the series. The transfer among portions in the series
is expressed by the sign "-->". Description of each
element of the series is called "action" and is
composed of the acronym of the portion follwed by
values of "k" and "n" parameters enclosed by
parenthesis. When the value of a parameter is not
determined, the sign "-" is used instead. It must be
noticed that parameters "k" and "n" decides the ends of
inactive arcs treated by this parser.

 The tracking of the operation is divided into blocks
the borders of which are the erasure of inactive arcs by
the portion EA. Each figure in Fig.8 corresponds to
respective block.

 The first block operation is: CM(-,-) --> NI(-,-) -->
WE(-, 1) --> EA(-,1) --> IK(0, 1) --> WI(0,1) =
generation of a --> P1(0,1) = generation of e -->
AG(0,1) --> P2(0,1) = generation of f --> P3(0,1) -->
KS(0,1) --> IN(0,1) --> WE(0,2) --> EA(0,2) = erasure
of a and e.

 The description after the symbol "=" shows
operation on arcs. The chart for this block is Fig.8(1).
This chart is composed of 4 nodes which are nodes 0, 1,
2, 3 and 4. The 3 nodes at right side are isolated
because no arcs connecting them exists. At the action
WI(0,1), the inactive arc "a" shown in Fig.7(a) is
introduced to the chart.

At action P1(0,1), procedure 1' is applied to the
inactive arc "a" and the rewriting rule in Fig.5(1)
giving rise to the inactive arc "e" having the span
identical with arc "a". At action P2(0,1), procedure 1 is
applied to the inactive arc "e" togetner with rewriting
rule in Fig.5(7) giving rise to the active arc "f". By the
action EA(0,2), entire inactive arcs in Fig.8(1) are
eliminated.

 The second block operation is: IK(0,2) --> WI(1,2)
= generation of b --> P1(1,2) = generation of g and h
--> AG(1.2) --> P2(1,2) = generation of i and j -->

P3(1,2) --> KS(1,2) --> IN(1,2) --> WE(1,3) -->
EA(1,3) = erasure of b, g and h.

 The chart for this block is Fig.8(2). At the action
WI(1,2), the inactive arc "b" is introduced to the chart.
At action P1(1,2), procedure 1' is applied to the
inactive arc "b" together with the rewriting rule in
Fig.5(8) giving rise to the inactive arc "g". Similarly,
inactive arc "h" is obtained from "b" using the
rewriting rule in Fig.5(9). At action P2(1,2), procedure
1 is applied respectively to the pair of inactive arc "g"
together with rewriting rule in Fig.5(8) and to the pair
of inactive arc "h" together with rewriting rule in
Fig.5.(9), generating respectively the active arcs "i"
and "j". By the action EA(1,3), entire inactive arcs in
Fig.8(2) are eliminated.

 The third block operation is: IK(1,3) --> WI(2,3) =
generation of c --> P1(2,3) = generation of ｋ and l -->
AG(2,3) --> P2(2,3) = generartion of t --> P3(2,3) =
generation of m and n --> KS(2,3) --> IN(2,3) -->
WE(2,4) --> EA(2,4) = erasure of c and k..

The chart for this block is Fig.8(3). At the action
WI(2,3), the inactive arc "c" is introduced to the chart.

At action P1(2,3), procedure 1' is applied to the
inactive arc "c" together with rewriting rule in Fig.5(4)
generating the inactive arc "k". In addition, inactive
arc "l" is obtained from "c" using the rewriting rule in
Fig.5(5). At P2(2,3), application of procedrue 1 to the
inactive arc "l" with the use of rewriting rules of
Fig.5(7) and Fig.5(9) produces active arcs "t" and "u".
These active arcs do not contribute to the generation of
analysis result. At action P3(2,3), procedure 2 is
applied respectively to the pair of inactive arc "k" and
active arc "i" and to the pair of inactive arc "l" and
active arc "j", generating the active arcs "m" and "n".

By the action EA(2,4), entire inactive arcs in
Fig.8(3) are eliminated.

 The fourth block operation is: IK(2,4) --> WI(3,4)
= generation of d --> P１(3,4) = generation of o -->
AG(3,4) --> P2(3,4) --> P3(3,4) = generation of p and
q --> KS(3,4) --> RK(3,4) --> P1(1,4) --> AG(1,4) =
generation of r and elimination of p and q.

 The chart for this block is Fig.8(4). At the action
WI(3,4), the inactive arc "d" is introduced to the chart.
At action P1(3,4), procedure 1' is applied to the
inactive arc "d" together with rewriting rule in Fig.5(6)
generating the inactive arc "o".

 At action P3(3,4), procedure 2 is applied to the
inactive arc "o" and active arc "m" generating the
inactive arc "p". Similarly, inactive arc "q" is obtained
from "n". KS(3,4) decides that next action is RK(3,4)
because there are inactive arcs "p" and "q" having the
left end at position 1 which is amaller than present
value of "k" which is 3. The action RK(3,4) reduces
the value of "k" to 1 which is the left end position of

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 26

the arcs "p" and "q". The inactive arcs between
positions 1 and 4 are hereafter treated. At action
AG(2,4), inactive arcs "p" and "q" are aggregated into
inactive arc "r". Then inactive arcs "p" and "q" are
deleted.

 The fifth block operation is: P2(1,4) --> P3(1,4) =
generation of "s" --> KS(1,4) --> RK(1,4) --> P1(0,4)
-->P2(0,4) --> P3(0,4) --> KS(0,4) -->IK(0,4)
-->WE(0,5) -->AR(0,5) = completion of parse with
the output "s".

 The chart for this block is Fig.8(5). At action
P3(0,4), procedure 2 is applied to the inactive arc "r"
and active arc "f" generating the inactive arc "s". This
is analysis result aimed at that is generated from the
input sentence in Fig.5(10).

 Further operation make completion of parsing.
Finally, action WE(0,5) decides that entire word in
input sentence has been introduced to the chart and
turns, it decignates that next action is action AR(0,5).
AR(0,5) yield the inactive arc "s" as output.
4 Treatment of tree structure in letter
string region
4.1 Expression of tree structure by letter

string
Tree structure is expressed by letter string in the way

of Fig.9. Fig.9(a) shows generic illustration of the
method. The upper part is the tree structure and the
lower part is its letter string expression. As seen in
Fig.9(a), the letter string consists of a parenthesis pair
in which the topmost node and child tree structures are
placed. The topmost node is placed directly after the
open parenthesis and child tree structures are arranged
keeping the order of existence at the tree structural
expression.

Fig.9 expression of tree structure by letter string
The node0 being the topmost node has no structure

taking the characteristics of "atom", whereas child
tree structures have constructions. Namely, each child
structures have its own letter string at which the first
and last letters are parenthesis. Never-the-less, the
regulation is that the "atom" structure at tree structural
expression is expressed without parenthesis.

 Fig.9(b) is an example of letter string expression
where the upper part is tree structure and lower part is

its letter string expression. In this paper, only lower
case letters expresses word nodes.
4.2 Expression of procedures in letter string

region
Here, the method to deal with parsing procedures in

the region of letter string, is investigated. Fig.10 is the
method to treat procedure 1' in the ragion of letter
string. Fig.10(a) is the tree structural expression of
procedure 1' which is identical with Fig.1(b) except
for little modification. Here, procedure 1' is applied to
the inactive arc with the label composed of a node
"can" together with a rewriting rule requiring the node
"can", generating the structure to the right of the arrow.
The input and output of the procedrue have the same
span.

Fig.10 Treatment of procedure 1' in the
ragion of letter string

Position number is composed of a letter "&"
followed by a digit. Position numbers are attached to
the lower nodes of rewriting rules. In Fig.10(a), a
position number "&0" exists. The position number of
a node is identical with the relative order (counted
from 0) of the node among sister nodes. Position
number is necessary for the treatment in letter string
region. By the position number, the designation of
unsaturated condition and its order among sister nodes
are expressed.

Fig.10(b) shows the process to conduct the
procedure 1' operation of Fig.10(a) in the region of
letter string. As the correspondence of the portions
appearing in Fig.10(a) and Fig.10(b) is obvious, no
description is made for the correspondence.

The portion to the left of "+" sign is a letter string
expressing of a inactive arc. The way of expression
comforms to the method in Section 4.1. Hereafter, all
the letter string expressions are defined to comform to
the method.

 Fig.11 Treatment of procedure 1 in the ragion of
letter string

The portion to the right of "+" sign in the Fig.10(b) is
letter string expression of the rewriting rule the lower
node of which requires node "can". The procedure 1'
is conducted by "over-writing" the unsaturated node
compoosed of position number(&0) and the required

(b)

can + (AV &0(can)) (AV can)

(a)

● ●
1 2

can
+

&0(can)

AV

can

AV

● ●
1 2

(node0 (tree1) (tree 2) (tree3) - -)

(S (NP they) (VP (AV can) (V produce) (ADV finely)))

node0

- - tree1 tree2 tree3
(a)

(b)

(b)

(a)

S

VP

AV V
can

NP ADV

finelythey produce

(VP (AV can) &1(V) &2(ADV)) + (V produce)

(VP (AV can) (V produce) &2(ADV))

● ● ●
1 2 3

● ● ●

1 2 3

V

producecan

AV &2(ADV)

VP

V

producecan

AV

VP

&1(V) &2(ADV)

+

(a) (b)

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 27

node(can) with the inactive arc. The operation
generates the letter string to the right of the arrow
which is letter string expression of the structure in
Fig.10(a).

It must be noted that the information of span of an
arc exists in separate portion. The information of span
is attached to the inactive arc and carried over to the
result of the operation of procedure 1'.

Fig.11 is the method to treat procedure 1 in the
region of letter string. The example shown in Fig.11 is
the same as that in Fig.2. Fig.11(a) is tree structural
expression and Fig.11(b) shows letter string
expression.

 The operation of procedure 1 is the same as that of
procedure 1' except for the fact that the number of
lower nodes of rewriting rule is more than 1.

 The procedure 1 is conducted by "over-writing" the
unsaturated node compoosed of position number(&0)
and the required node(AV) with the inactive arc.

Fig.12 Treatment of procedure 2 in the region of
letter string

Fig.12 is the method to treat procedure 2 in the
region of letter string. The example shown in Fig.12 is
the same as that in Fig.3. Fig.12(a) is tree structural
expression and Fig.12(b) shows letter string
expression. This procedure connects an active arc
situated to the left and an inactive arc situated to the
right.

 The procedure application is conducted by
"over-writing" the unsaturated node compoosed of
position number(&1) and the required node(V), with
the inactive arc having topmost node "V". To
accomplish the procedure application, the condition
that the right end of the active arc is identical with the
left end of the inactive arc must be met. This condition
is investigated by the span information attached to the
arcs.

Each active arc has the position number already
filled with inactive arc. Consequently the vacant node
of last position number is over-written by the
procedure 2 operation.
4.3 Process of over-writing operation

 Taking the operation in Fig.12(b) as an example, process
of over-writing operation is described. Fig.13(a) shows
operation of procedure 2 over-writing the portion
composed of position number and requiered node with the
inactive arc. Fig.13(b) illustrates the process of the
operation.

First, the string which stands for the active arc and
which will be over-written by the inactive arc is

introduced as string s0. From string s0 the
over-written string composed of position number and
requiered node is eliminated. This elimination breaks
the string s0 into forepart string s1 and hinder part
string s2. The string of the inactive arc is s3. Here an
end of letter string is expressed by ‘Yen mark plus 0’.

 Consequently, inactive arc string s3 is connected to
the end of s1. The result of the connection is newly
named as s1. Then string s2 is connected to the end of
new s1. This result is named s1 again. The finally
obtained s1 is the over-writing result.

 Fig.13 Process of over-writing operation
Strings s0, first s1, s2 and s3 are placed at the second

line of Fig.13(b). The string s1 obtained in the course
of operation is shown at the third line. The string s1
obtained as the over-write result is placed at the fourth
line.
5 Summary

The KATE type parser where procedures 1' ,
procedure 1 and procedure 2 are conducted entirely in
letter string region is realized. This parser can generate
trees with OR node which bundles plural partial trees
with the same span. This parser has simple structure
realizing small line number when coded in C.

References:

[1] M.Kay; Algorithm Schemata and Data Structures in
Sytactic Processing; Technical Report CSL-80-12,
Xerox PARC(Oct, 1980)

[2]V.R.Pratt; LINGOL-A Progress Report; IJICAI-4
(1975)

[3]H.Tanaka, T.Sato, F.Motoyoshi; Program System
for Natural Language Processing--Extended LINGOL(in
Japanese);Trans JIECE Vol. J60-D, 12; Dec. 1977

[4]H.Sakaki, K.Hashimoto, M.Suzuki, I.Nogaito,
T.Tanaka; A Parsing Method of Natural Language by
Filtering Procedure, Trans JIECE, Vol.E-69, 10; Oct
1986

[5]F.Morawiets; Chart Parsing and Constraint
Programming, Proc. COLING 2000 pp 551-557

[6] H.Watanabe; A Method for Accelerating
CFG-Parsing by Using Dependency Information, Proc.
COLING 2000 pp 913-918.

[7]M.Becker, A. Frank; A Stochastic Topological
Parser for German, Proc. COLING 2002 pp71-77

(b)

(AV can) + (VP &0(AV) &1(V) &2(ADV))

(VP (AV can) &1(V) &2(ADV))

(a)

VP

&0(AV)
&1(V)

&2(ADV)

● ●

1 2

can

AV
+

● ●

1 2

can

AV

VP

&1(V)

&2(ADV)

(b)

(VP (AV can) &1(V) &2(ADV))+(V produce)

(VP (AV can) (V produce) &2(ADV))
(a)

s0 : (VP (AV can) &1(V) &2(ADV))\0

s1 : (VP (AV can)_\0 s2 : _&2(ADV))\0 s3 : (V produce)\0

s1 : (VP (AV can)_(V produce)\0

s1 : (VP (AV can)_(V produce)_&2(ADV))\0

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 28

