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Abstract: Reachability and observability criteria are obtained for 2D continuous-discrete time-variable Attasi type

systems by using suitable 2D reachability and observability Gramians. Necessary and sufficient conditions of
reachability and observability are derived for time-invariant systems. The duality between the two concepts is
emphasized as well as their connection with the minimality of these systems.
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1 Introduction 2 The state space representation of
The concepts of controllability and observability, in- the 2D continuous-discrete systems

troduced by Kalman for 1D systems were extended t0 \We consider the linear spacés = R", U = R™
2D systems for Roesser [9], Fornasini and Marchesini gndy = R, called respectively thstate input and
[2], and Attasi [1] models; in order to keep their rela- output spacesThe time setig’ = R x Z.
tionship with minimality, new concepts of modal con-
trollability and modal observability were introduced  pefinition 1 A two-dimensional continuous-
in [6]. discrete linear system (2Dcd) is a quintuplet
In this paper a class of 2D continuous-discrete ¥ = (A, (¢, k), Ax(t, k), B(t, k), C(t, k), D(t,k)) €
time-variable linear systems is studied, which is re- R"*n x R™™" x R™™ x RPX" x RP*™ with
lated to Attasi’s 2D discrete model and represents the A, (¢, k)As(t, k) = As(t,k)Aq(t, k) Y(t, k) € T,
extension to time-variable framework of the hybrid where all matrices are continuous with respect to
systems introduced in [8]. Such systems can appear ¢t ¢ R for anyk € Z; the state space representation

in various problems as signal and image processing, of X is given by the state and output equations
seismology and geophysics, control of multipass pro-

cesses, iterative learning control synthesis [5] or repet- i(t,k+1)= A1 (t,k+1)z(t,k+1)+ Az (t,k)2(t,k)
itive processes [3]. —Ay(t, k) As(t, k)x(t, k) + B(t, k)u(t, k) (1)
The state and output formulae for these systems y(t, k) = Ot k)z(t, k) + D(t, k)u(t,k) (2)

are established in Section 2 and the notions of com-
plete reachability and complete observability are de-
fined. These properties are characterized by means of
the full ranks of suitable 2D reachability and observ-

ability Gramians. (continuous) fundamental matrix of, (¢, k) with re-

Section _4 is devoted to time_-invariant _2D spect tot € R, for any fixedk € Z. ®(t, to; k) has
continuous-discrete systems and a list of criteria of e following properties, for ang; o, t; € R:

reachability and observability is provided. The duality
between th.e two concest is emphasized. - i) g?@(t’ tor k) = A (£, k) (L, to; ),
In Section 5 the relation between reachability, ob- N
servability and minimality is established. i) ®(to, tos k) = In,
i) Pt t1; k)P(t1,tos k) = D(¢, tos k),
)

*WSEAS Transactions on Mathematics, ... (2007), ... v O(t, to; k)~ = d(to, t; k). (3)

wherei(t, k) = 22 (t, k).

Let us denote byb(¢,to; k) or @4, (t,to; k) the




If A; is a constant matrix, the®(¢,tg;k) =
Al(t—to).

The discrete fundamental matri¥'(t; k, ko) of
the matrixAy(¢, k) is defined byF'(t; k, ko) =

e

- Ag(t,ko) for k > ko

[ At k—1)Ag(tk—2) -
- k= ko

I, for

for any fixedt € R.

If Ay is a constant matrix, thed'(t; k, ko) =
Ak=ho,

O(t,t0; k) andF(s;1,1p) are commutative matri
ces for anyt, tg, s € R andk,l,ly € Z sinceA; (t, k)
andAs(t, k) are commutative matrices.

Definition2 A vector x5 € X is said to be
the initial state of> at the momentty, ko) € T'if, for

any (t,k) € T with (¢t,k) > (to, ko) the following
conditions hold:

.Z'(t,k?o):

(t,tosko)xo, (to,k)=F(to; k,ko)zo. (4)

In [7] it was proved:

Proposition 3 The state of the systel at the mo-
ment(t, k) € T determined by the contral(-, -) and
by the initial statery € X is

z(t,k) =D(t,tosk) F(to;k,ko)wo+
L k1

/Z@tsk

to = ko

s;k, L+ 1)B(s,l)u(s,l)ds. (5)

By replacing the state(t, k) given by (5) in the
output equation (2) we obtain

Proposition 4 The input-output map of the systéin
is given by the formula

¢ k—1

> C(th

to 1=k,
(L, s; k) (s kl+1)B(sl)u(sl)ds+D(tk)u(tk). (6)

y(th) =C (LR Ltk )F (tok, ko) o+

3 Reachability and observability
of time-variable 2D continuous-
discrete systems

For the concept of reachability we need only the
state equation (1), hence a 2Dcd system can be re-

duced to the tripleE = (A;(t, k), A2(t, k), B(t, k)).

For observability the system can be reduced to

the triplet Y = (Ai(¢, k), Aa2(t, k),C(t, k)). For
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both notions a system will be a quadruplEt =
(Al(t¢ k)>A2(t>k)>B(t7k)>C(t7k))'

By (s,l) < (t,k) we means < t,I < k and
(s.1) # (1, k).

A triplet (t,k,z) € R x Z x X is said to be a
phaseof X if = is the state ok at the momentt, k)
(i.e.z = z(t, k), wherex(t, k) is given by (5)).

Definiton 5 A phase(t,k,z) of ¥ is said to be
reachableif there exist(to, ko) € T, (to,ko) <
(t,k) and a controlu(-, -) which transfers the phase
(t(), ko, O) to (t, k, :L')

A phas€(t, k, x) is said to be controllablé there
exist(t1,k1) € T, (t1,k1) > (t, k) and a control
u(+, -) which transfers the phage, &, z) to (¢, k1, 0).

If for some fixed, x) € T every phasér, x, x)
is reachable (controllable), the systernis said to be
completely reachablécompletely controllableat the
moment(t, ).

Definiton 6 A phase (7,x,z) is said to be
unobservableif for any control « it provides the
same outpuy(s,1) for (s,1) > (7,x) as the phase
(1,x,0). In this case the state € X is said to be
unobservable afr, x)

The system ¥ is said to Dbe

completely observable at(r,y) if there is no
state unobservable &t x).
Definition 7 The matrices
rx—1
z(t,T;k,x)Z/ Z@ 7,8 X)F (85X, 1+1) x
t

B(sJ)B(sJ)TF(s;x,H DTo(r, sx) " ds, (7)

(1, t; %, k 750, x)7

/7- Z D(s,T; Z)TF(
l=x

C(s,)TC(s,))F(r;1,x)®(s,7;1)ds. (8)

are called respectively the reachability Gramiand
the observability Gramiaof X.

We have proved in [8]:

Theorem 8 ¥ is completely reachable &t, x) if and
only if
rankRyx(t, 7;:k,x) =n

for some(t, k) < (7, x).

Theorem 9 The system by =
(A1(t, k), Aa(t, k), C(t, k)) is completely observable
at (7, x) if and only if

rankOx(t,t; x, k) = n. 9
for some(t, k) > (7, x).



4 Reachability and observability
of time-invariant 2D continuous-
discrete systems

Let us consider a time invariant systed =
(A1, Ay, B,(C), i.e. a system with4,, As, B and
C constant matrices.
the initial moment(ty, kp) = (0,0) and the time set

T = R' x ZT. Then the state formula (5) and the
input-output map (6) become

x(t, k) = eMtAbzy +

/ ZeAl (t=5) AR=1=1 Byy(s, 1)ds (10)
0 =0

y(t, k) = CeMtAkzq +
/ Zc A(=9) AFI1 Bu(s Dds. (L)

0 =0

Definition 10 The systent? = (A¢, A4, B4 C) is
called the dualof X if A¢ = AT A4 = AT B¢ =
cr, il =

We can prove (see [8]) the Duality Principle:

Theorem 11 The systerit? is completely observable
if and only if3 is completely reachable.

We associate t@ the reachability matrixCy =
[BAIB ... A" 'B AyB A1AB... AV A58
A3~'B AALT'B ATTAL B
and theobservability matrix
Oy = [OT ATCcT ... (AD)r-1cT AlCT
ATATCT . (ATyn—tATCT ... (AD—1oT
AT (ADy1CT L (AT AT
Theorem 8 gives (see [7],Theorem 4.2)

Theorem 12 ¥ = (A4, Ag,
able if and only if

B) is completely reach-

rankCy, = n. (12)

We can prove

Proposition 13 The set of all reachable statesYfis
X, =ImCs.

Proposition 14 The set of all reachable states bf
is the smallest subspace &f which is (A4;, Ag)-
invariant and contains the columns Bt

In this case we can consider
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Theorem 15 ¥ = (A4, Ay, B) is completely reach-
able if and only ifX is the smallest subspace af
which is(A;, Az2)-invariant and contains the columns
of B.

By duality (Theorem 11) and Theorem 12 we obtain

Theorem 16 The systent = (A4, Ay, C) is com-
pletely observable if and only if

rankOy, = n. (13)
From (10) and Definition 7 we obtain

Proposition 17 The set of all unobservable states of
Y is Xy = KerOy..

Proof: By using Hamilton-Cayley Theorem for
A; and Ay we obtainX,, = {z € X | CA{Akz =
0,Vl,k =0,n— 1} = KerOsx.

Proposition 18 The set X,, of all unobservable
states ofY is the greatest subspace &f which is
(A1, Ay)—invariant and is contained in Kér.

We obtain from Proposition 18:

Theorem 19 The systent = (A4, Ay, C) is com-
pletely observable if and only if0} is the greatest
subspace ofX which is (A;, Ay)—invariant and is
contained in Ke€'.

I;)efinition 20 Two system& = (A1, A2, B,C') and
¥ = (A1, Ay, B, C) are said to be isomorphi€ there
exists a nonsingular matrix’ € R™*" such that

Ai=T'AT, i=1,2, B=T"'B, C =CT.(14)

Theorem 21 Any systen = (A, Az, B) is isomor-
phic to a systent. = (A;, A,, B) of the form
1 Alll A121 :| 1 { A112 A122 :|
A = A =
1 { 0 A221 0 A222 ’

B_{Bl] (15)

with A111,A112 S Rqu,Bl S qum,q < n. The
triplet ¥; = (Ai11, 4112, B1) is completely reach-
able.

Proof: We consider the direct sum decomposition of
the state spac& = R"™ asX = X; & X, where

X, = X;. The patrtitions of the matrices in (15) are
obtained with respect to this decomposition, since by
Proposition 14X, is (A1, Ay)-invariant and contains
the columns ofB; ¢ is the dimension of the subspace

An immediate consequence of Proposition 14 is the X,.

following

We can derive other criteria of reachability.



Theorem 22 ¥ = (A;, Ay, B) is completely reach-
able if and only if there is no common left eigenvector
of matricesA4; and A,, orthogonal on the columns of
B.

Proof:Let us assume that there exists R" \ {0}
such that I\, 1 € C with vTA; = M 074, =
wl andv? B = 0. ThenvT AL AL B = NipoTB =
0 Vi,j >0, hencev’Cy = 0, i.e. ¥ = (Ay, Az, B)
is not completely reachable.

Conversely, it is not completely reachable, then
there existe € R™\ {0} such thab” Cyx, = 0, hence
the subspacé; = {r € R"|z7Cy = 0} contains a
vectorv # 0. If x € Sy, thenz? A} A} B = 0 for any
1,7 = 0,n — 1 and by Hamilton-Cayley Theorem this
equality is true for any, j > 0. Then, for anyr € S,
(AT2)TALALB = zTATAIB = 0, Vi,j > 0,
henceAlTx € S, i.e. Siis AlT-invariant; analo-
gously, S; is AZ-invariant. It results thatS; con-
tains an eigenvector of A7; let A be the corre-

sponding eigenvalue. Let us consider the subspace — 1

Sy = {l‘ S X]A{x = )\:c} If z € S5 then
AT(AT2) = AT ATz = MAT2, henceAlr € S,
that is Sy is AZ-invariant and so isS3 = S; N Ss.
Then S contains an eigenvectar of A" and since
S3 C So, w is an eigenvector oﬁlT too. Moreover,
sinceS; C S, we havew” Cy, = 0 and particularly
w? B = 0, hencew is a common left eigenvector of
Ay and A, orthogonal on the columns @&f.

The following theorem is an extension to 2Dcd
systems of the Popov-Hautus-Belevitch criterion of
reachability.

Theorem 23 ¥ = (A;, Ay, B) is completely reach-
able if and only if for any\{, Ay € C

rankf B M1 —A; Xl — Ay | =n.
Proof: Obviously, the existence of;, Ao € C such
that
rank B M1 — A; Xl — Az ] < n is equivalent
to the existence ofv € R™ \ {0} such that
vI'[ B MI—A; Xl — Ay ] = 0 which means
vI'B = 0,074, = Mol 0T Ay = \o” that is, by
Theorem 22, to the fact thatis not completely reach-
able.

By duality we obtain the following results con-
cerning observability:

Theorem 24 The systent = (A, Ay, C) is com-
pletely observable if and only if there is no common
eigenvector of the matriced; and A, belonging to
KerC'.
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Theorem 25 The systent = (A4, Ay, C) is com-
pletely observable if and only if for any, Ao € C

C
rank | A\ — A,
)\2[ — A2

=n.

5 Reachability,
minimality

Definition 26 The matrix

observability and

Ts(s,z) = C(sI — Ay) "' (21 — Ay)"'B  (16)
is called the transfer matrigf the time-invariant sys-
temX = (Al, Ao, B, C)

Obviously, Tx (s, z) is ap x m rational strictly
proper (in both variables andz) matrix with separa-
ble denominator, since it has the foff (s, z)

C(SI - Al)*(ZI - Ag)*B

det(sI—A1)det(zI—A2)

Definition 27 Given a strictly proper matrif’(s, z),
a system¥ = (A;,A4,,B,C) is said to be a
realizationof X if 7'(s, z) = Tx (s, z), that is if

T(s,2) =C(sI — A)) Yzl — Ay)7'B.  (17)
A realizationX of 7'(s, z) is minimalif dim% <dim%
for any realization® of 7'(s, z).

Now let us consider the Laurent series expansion of
T(s,z) abouts = 00, z = 0

oo o0 . )
T(s,z) = Z Z M; s~ 77t

i=0 j=0

(18)

The matricesM; ; € RP*™ are called theMarkov
parameterf 7'(s, z).

Proposition 28 ¥ = (A1, Az, B, C) is a realization

of T'(s, z) if and only if, for anyi, j € N,
M;; = CALAlB. (19)

Proof: By (17) we haveT(s,z) =

Al)il(zf — Ag)ilB = .

C(XZo Als™ 1520 Ab2 797 1)B =

202520 CAjAys™ 127771 Since (18) holds
and two equal Laurent series have equal correspond-
ing coefficients, (19) is true.
The following theorem establishes the connec-
tion between the concepts of reachability, observabil-
ity and minimality.

C(sl —



Theorem 29 A systenkt = (44, Ay, B, C) is a mini-
mal realization of some strictly proper matriX(s, z)

if and only if ¥ is completely reachable and com-
pletely observable.

Proof: Necessity. By negation, let us assume thad
not completely reachable. Théhis isomorphic to a
system as in Theorem 21 with < n. If we partition

CasC=[C; Oy withC, € RP*, since(sI, —
Al = [ (sl — A1) —An2 } ! _
0 (an_q — Aggk)
(SIq — Allk)_l ? :|
ko= 1,2
|: 0 (SIn_q — Aggk)_l

we obtainT'(s, z) =Tx(s, 2) =Tx(s, 2) = C1(sly —
Alll)_l(zlq — A112) 1Bl Tgl (S Z) henceEl =
(A111, A112, B1,C4) is a realization off (s, z) of di-
mensiory < n, i.e. ¥ is not minimal. The cas® not
completely observable is similar.

Sufficiency. Let us assume thatis completely
reachable and completely observable. Xfis not
minimal, let> = (A, A, B,C) be a realization of
T(s,z) with dimE = 7 < n = dim¥. Let us con-
sider the controllability and observability matric@s
andOy; and let us denote by/s andOg the matrices
obtained fromC's, and Oy, by replacing the matrices
Ai,A5, B andC by A\l, A\Q, B andCA’. R

By Proposition 28, sinc& and X are realiza-
tions of the same matri¥'(s, z) we have (see (19)):
CALALB = CAi ALB,Vi,j > 0; these matrices are
the block elements of the product matri€esCs, and
Os.Cs; henceOx,Cs. = Ox,Cs,. Then, by Sylvester
Inequalities, we have radk; + rankCy, — n <
rankOx,Cs = rankOx,Cs < min(raniOs;, rankCs,).
By hypothesis rank®y, = n,rankCy = n and
rankOs, < 1 < n,rankCs, < 7 < n; we getn < 7,
contradiction, henc®& is minimal.

From Theorems 23, 25 and 29 we get

Theorem 30 X = (A1, Ao, B, C) is a minimal real-
ization if and only if

rank[ B \I-— A1 Aol — A2 ] =n, (20)
and
C
rank| \iI—A; | =n (21)
)\QI — AQ

forany A, A2 € C.

Since for anyn x n matrix A det(s] — A) =
0 if and only if s € o(A) (wheres(A) denotes the
spectrum of4, rank(sI — A) = n foranys ¢ o(A)
and Theorem 30 gives
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Corollary 31 ¥ = (44, As, B,C) is a minimal real-
ization if and only if equalities (20) and (21) hold for
any(s,z) € 0(A41) x o(Aaz).

Application Let us consider the 2Dcd system

a 0 0
> = (Al,AQ,B,C), where A; = 0 b c|,
0 ¢c b
d 0 0 1
Ay = 0 01|, B = 0 and
010 1

C = [ 1] The characterlstlc polyno-
) =

mials are de{tsl A1) =(s—a)(s—b—c)(s—b+c)
and detsl — As) = (z — a)(z — 1)(2 +1). The
matrices in (20) and (21) are respectively =
s—a 0 0 z—d 0 0 1
0 s—b —c 0 z —1 0
0 —c s—b 0 -1 =z 1
s—a 0 0 z—d 0 0 0
o7 = 0 s—b —c 0 z -1 1
0 —c s—b 0 -1 z -1
The spectra are respectivetyA;) = {a,b—c,b+c}
ando(Az) = {d, 1, —1} Then the3"¢ order minors of
C have respectively the values(@,— b)? — ¢?,d*> — 1
and —a + b + dc for (s,z) = (a,d), ¢(b + ¢ — a),
a—b+cc(d—1)andd —1for (s,z) = (b+¢,1),
c¢la —b+c¢), —2c(a — b+ ¢), ande(d + 1) for
(s,z) = (b— ¢, —1) and there are similar expressions
for the other values ofs, z) € o(A1) x o(A2). We
can conclude that is unreachable in the following
four case§z — b = ¢,d = 1), (¢ = 0,d = 1),
(a—b=—c,d=—1)and(c = 0,d = —1); other-
wise X is completely reachable. Obviously, fee= a
andz = d rankO < 2, henceX is unobservable. By
Corollary 31X is not minimal.

and

Now, the transfer matrix of ¥ is
Tx(s,z) = C(sI — A)7 1zl — A))"'B =
(s—a)(s—b—c)(z—d)(1—= _ 1
(s—a)(s—b—c)(s—b+c)(z—d)(z—1)(z+1) ~ (s—b+c)(z+1)

hence a minimal realization of is 4; = b — ¢,
Ay =—1,B=1andC = —1.

6 Conclusion

Reachability and observability criteria were obtained
for 2D continuous-discrete time-variable systems
by using suitable 2D reachability and observability
Gramians. In the case of time-invariant systems, nec-
essary and sufficient conditions of reachability and
observability were obtained by means of duality. The
relationship between reachability, observability and
minimality was emphasized. This research can be de-
veloped and extended to other topics of the Systems
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Theory such as stability, stabilizability, detectability,
feedback and observers and optimal control for 2D
continuous-discrete systems.
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