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Abstract: - This paper presents an evaluation of speaker-independent continuous phoneme recognition systems on the 

French speech database ESTER. The tested systems are syllable-based phoneme recognizers, i.e. they use syllables as 

basic units together with syllabic bigram language models and HMM topologies adapted to syllables. Once identified, 

syllables are converted back to phones. In a previous paper, we introduced the transitory models in order to build a 

system for phonetic transcription guided by syllables that achieved a Phoneme Error Rate of 15.8% when tested on a 

small part of the French Bref80 corpus [6]. In this study, the transitory model system was tested on a more 

comprehensive set of test data, ESTER [3]. It was also compared to three other syllable-based systems relying 

respectively on monophones, on triphones with full cross syllable context expansion and on triphones with simple 

syllable internal context expansion. The results confirm the benefit of using syllables for phoneme identification, as 

well as the interest in using the transitory models in terms of complexity and processing speed compared to systems 

based on context-dependent models. 
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1   Introduction 
Accurate phoneme recognition is essential for many 

speech applications. On the first hand, it is the starting 

point of large vocabulary automatic speech recognition 

systems [4]. Phoneme transcription also plays a major 

role in spoken document retrieval (SDR) methods [11]. 

The phoneme-based approach processes the audio data 

with a lightweight speech recognizer to produce either a 

phoneme transcription or a certain kind of phoneme 

lattice. The generated data are directly used for keyword 

spotting or for keyword search [12]. 

     This paper describes evaluation of four syllable-based 

approaches to automatically transcribe the 35 French 

phonemes used by Gauvain et al. [7]. It focuses on two 

major points : the significant improvements obtained 

thanks to the use of syllables as guideline for the 

phonetic transcription compared to pure phoneme 

recognition systems, and the interest to use the so-called 

transitory models according to their low complexity and 

processing speed. 

     Here, experimental results are reported from the 

French corpus ESTER, which was originally designed in 

the context of automatic textual transcription of spoken 

news [3]. 

     The paper is organized as follows. First, a brief 

description of the audio databases used in this evaluation 

is given in section 2. Next, section 3 describes the four 

systems under evaluation, which are respectively based 

on monophones, on triphones with full cross syllable 

context expansion, on triphones with syllable internal 

context expansion only and on the transitory models.      

Finally, the results are presented in section 4 and then 

discussed in section 5. 

 

 

2   Audio databases 
The train, development and test databases used in this 

evaluation are mostly taken from two audio databases of 

continuous French speech: the well-known ESTER and 

BREF80 corpus. The aim of the ESTER evaluation 

campaign was to evaluate automatic broadcast news rich 

transcription systems for the French language [3]. One of 

the main topics of this campaign was orthographic 

transcription for which the best system obtained around 

12% of WER for clean speech. BREF80 was designed to 

provide continuous speech data to develop dictation 

machines, for the evaluation of continuous speech 

recognition systems, and for the study of phonological 

variations [6]. The spoken texts have been selected from 

5 million words in the French newspaper, Le Monde. 

     All of the sound files are monophonic at a 16 kHz 

sample rate. 

 

 

2.1 Train database 
The train database covers approximately 20 hours of 

speech, 42% taken from Bref80, 47% from the training 

phase of ESTER and 11% from other audio material 

(Radio, TV, etc.). ESTER data has been created from the 

phase 1 of the ESTER train corpus, by taking 

approximately 10 hours of wideband speech out of the 

90 hours of manually transcripted audio. 
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2.2 Development database 
The development database, Dev_Bref80, is made up of 

52 minutes from BREF80 corpus and is not present in 

the training data.  

 

 

2.2 Test database 
The test database, Test_Ester, contains 7h30 of 

continuous wideband speech segments taken from the 10 

hours of radio broadcast news in the ESTER test set; the 

entire set is kept except the phone bandwidth, non 

spoken, mixed speech and non transcribed segments. 

     Creating this corpus required an automatic 

phonetization of data by building an associated 

dictionary of 65K distinct words, which corresponds to 

approximately 300K phonetic forms. This dictionary has 

been used to perform a forced alignment based on 

monophones trained from the previous paper [9]. 

 

 

3   Systems description 
The four systems under evaluation process the same 

input acoustic features to produce output phonemes. 

They use internal syllable modeling, identification and 

decomposition of syllables to produce output phonemes. 

Two language models have been used and the four 

systems share the same pool of 35 phonemes as in [7] 

with the following differences: no 'h' and no 'N', but an 

inspiration 'ii' and a short pause 'sp'. 

 

 

3.1 Acoustic features 
The speech signal is converted into a sequence of MFCC 

feature vectors with a fixed 32ms frame and a frame rate 

of 10ms. Each feature vector has 38 dimensions: 12 

cepstral coefficients, 12 cepstral plus energy derivatives 

and 12 cepstral plus energy accelerations. Cepstral mean 

normalization is applied on each file. 

     All the models were trained using the Baum Welch 

algorithm [1] provided by HTK Software [14]. The 

corresponding labels were initialized using a first 

phoneme segmentation obtained by a force-alignment 

procedure. The resulting number of Gaussians is 256 for 

the monophone system and 32 for transitory and 

triphone systems. 

     The phoneme/syllable decoding is carried out by 

determining the most likely HMM state sequence using 

the one pass Viterbi beam search algorithm [13].  

 

 

3.2 Language models 
Two bigram language models have been used and 

trained on textual material in our train corpus using the 

CMU Toolkit [2]. 

 

3.1.1 Phoneme-based language model 
The first one is phoneme-based and built upon the 910K 

phones in our train set, resulting from a forced-alignment 

procedure. The perplexity evaluated on Dev_Bref80 

reaches 17.24. 

 

3.2.2 Syllable-based language model 

The second one is syllable-based. As mentioned by 

Jones [5], a syllable is a notion quite difficult to define, 

but we can figure it as presented by Laver [8] and  

illustrated on Fig. 1. In [9], we explain some choices 

such as the segmentation in syllables of a whole phrase 

instead of just segmenting inside words as done by 

Jones. The purpose of this syllabization is to use 

syllables as a guideline for phonetic transcription and not 

as a real new unit. 

 
Fig. 1 : Illustration of syllable components 

 

     In order to build this syllable-based bigram, the 

phonetic transcriptions are segmented by syllables. The 

frequencies are computed and the most frequent 

syllables are selected; in our case, keeping 2000 

syllables gives a good compromise between the number 

of units and the complexity.  Finally, to avoid out-of-

vocabulary syllables, these syllabic labels are 

reformatted by splitting all syllables which are not 

present in the top ones. As a result, our bigram is 

constructed from approximately 2000 syllables and 35 

phones. The train corpus contains 424K syllables and the 

perplexity on Dev_Bref80 reaches 126.34. 

 

 

3.3   Overview of the systems 
Four systems have been trained, based on four different 

kinds of models : monophones, triphones with full cross 

syllable context expansion, triphones with syllable 

internal context expansion only and transitory models. 

The 2000 syllables are then created by concatenation of 

these units, in order to apply the syllabic bigram. 

 

3.3.1   ASR_CI : Context-independent 

ASR_CI is the basic phoneme recognition system. It 

makes use of the 35 French basic phones. The phonemes 

are modeled by traditional context-independent 3-states 

HMMs, except a 5-state HMM for the silence model and 

a 1-state (skip) HMM for the "short pause" model. 

Following experiments on Dev_Bref80, 256-Gaussian 

mixtures have been selected for each state. According to 

this unit, a syllable is a concatenation of context-

syllable 

onset 

(optional) 

nucleus coda 

(optional) 
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independent models. A syllable composed of N phones 

has 3*N states. 

 

3.3.2  ASR_F : Full Cross Syllable Context Expansion 

This second system is based on state-of-the-art models 

i.e. context-dependent models with decision tree 

clustering of states. This pool contains 49283 HMMs but 

only 19470 physical ones sharing 6053 different 

mixtures of 32 Gaussians. In more detail, they are 35 

"context-free" models, 2592 diphones and 46656 

triphones. In the same way as for ASR_CI, syllables are 

built by concatenations of context-dependent models. 

Also, the context is not limited to the inside of syllables, 

but is expanded between them. This expansion gives this 

system an entire coverage of phones and co-articulation 

effects, but also it makes this system the more complex 

in terms of nodes and links in the network, as shown in 

section 4. A syllable composed of N phones has also got 

3*N states.  

 

3.3.3   ASR_I : Syllable Internal Context Expansion 

With ASR_I, the goal is to keep context-dependent 

models as basic units while avoiding inter-syllables 

expansion in order to keep the complexity low. In the 

case of ASR_F, not forcing this expansion significantly 

decreases the performance because of non-adapted 

training. Consequently, the main difference between 

ASR_I and ASR_F concerns the training phase where 

labels are modified as illustrated in Fig. 2. The new 

labels are built relatively to syllables here, in order to 

make diphones and related tied triphones more 

representative of "inter-syllables" zones. The resulting 

coverage will obviously be more blurred than in ASR_F. 

 
Fig. 2 : Creation of labels for word "Elvis" 

 

The final pool contains 34852 HMMs but only 28687 

physical ones sharing 2442 different mixtures of 32 

Gaussians. A syllable composed of N phones has also 

got 3*N states. 

 

3.3.4   ASR_T : Transitory models 

ASR_T is a system based on the work presented in [9], 

where syllables are built from one-state models called 

transitory models, where XS designs a start state, XC a 

center state, XE an end state and X2Y a transition 

between phonemes X and Y. This method is illustrated 

by Fig. 3. 

 
Fig. 3 : Syllables from transitory models 

 

     For 32 phones (silence models are treated as context-

independent models), there are 1120 one-state models 

with a mixture composed of 32 Gaussians. Some of 

these models may not appear in training corpus; this is 

why an "untrained model" is added, containing a single 

global Gaussian learned on all training data. 

     Training ASR_T requires a new format for the label 

files (Fig. 2), i.e. transform the phoneme transcriptions 

into syllable transcriptions, as described in the language 

model section. This pool contains the 2000 syllables and 

the 35 phones, sharing 1103 different mixtures. A 

syllable composed of N phones has got 2*N+1 states. 

 

 

4   Results 
Tables 1 and 2 display the performances of the different 

systems respectively on the Dev_Bref80 and the 

Test_Ester corpora. Recognition performances are noted 

relatively to both the percentage of correct recognized 

phones and to the Phoneme Error Rate (PER). 

 

N

DIS
AccuracyPER

)(*100
100

++
=−= (1) 

 

     Where N is the number of phones of the reference 

transcription, I is the number of insertions, S is the 

number of substitutions and D is the number of omitted 

phones. Silences and inspirations have been removed 

prior to scoring. In the case of syllabic bigram, resulting 

syllables are re-split into phones before computing this 

error rate. 

     Complexity and processing speed are given in table 4 

and 5. Note that we fixed a same beam threshold strategy 

for all experiments in the decoding process. 

     Results for ASR_I and ASR_T are only presented for 

the syllabic decoding because of their specific properties. 
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 Phonetic Decoding Syllabic Decoding 

 Correct PER Correct PER 

ASR_CI 77.23 23.96 85.33 15.85 

ASR_F 85.24 20.45 89.34 15.21 

ASR_I   87.87 15.12 

ASR_T   84.91 15.20 

Table 1 : Results on Dev_Bref80 

 Phonetic Decoding Syllabic Decoding 

 Correct PER Correct PER 

ASR_CI 71.15 30.66 78.34 23.73 

ASR_F 79.52 28.16 83.43 23.46 

ASR_I   81.60 22.34 

ASR_T   80.83 23.19 

Table 2 : Results on Test_Ester 

 

4.1   Complexity and processing speed 
Key characteristics of automatic phoneme recognition 

not only include PER but also concern system 

complexity. Table 3 recalls the complexity of each 

system in terms of number of Gaussians per mixture, 

number of physical models, number of different states 

and number of states per syllable. 

 
 

# of 

mixtures 
Models States 

States per 

syllable (N 

phones) 

ASR_CI 256 35 105 3*N 

ASR_F 32 19470 6053 3*N 

ASR_I 32 28687 2442 3*N 

ASR_T 32 2000 1103 2*N+1 

Table 3 : Topology complexity 

     Table 4 summarizes the complexity of networks 

generated by HTK in terms of the number of nodes and 

number of links. Compared to other networks built for 

syllabic bigram, ASR_F is the more complex, with 

approximately 12 times more nodes and 6 times more 

links. This is due to extended context between syllables. 

Note that a node here represents a unit, that's why ASR_T 

has twice as many nodes than ASR_I. Indeed, according 

to their topology, they have a different number of states 

per unit. In addition, ASR_I has fewer nodes than 

ASR_CI because of tied models. 

 
 Phonetic Decoding Syllabic Decoding 

 Nodes Links Nodes Links 

ASR_CI 111 1389 10208 97313 

ASR_F 30481 70006 199198 605369 

ASR_I   8196 94435 

ASR_T   16369 99419 

Table 4 : Network complexity 

     Concerning the processing speed, it depends mainly 

on the decoding strategy. The values given below are 

informative and are just here to compare the different 

systems. Table 5 summarizes the average processing 

speed for the decoding of speech using the HVite 

decoder of HTK on a Xeon CPU, 3.4GHz with 2Go of 

RAM. A same beam threshold of value 180 is used; this 

value was found to lead to a good tradeoff between 

complexity and surviving in the token passing algorithm. 

 

 Phonetic LM Syllabic LM 

ASR_CI 0.88 1.60 

ASR_F 5.81 10.38 

ASR_I  2.23 

ASR_T  1.84 

Table 5 : Processing speed (x real-time) 

 

5   Discussion 
Though training context-dependent models requires a 

huge database, and the 20 hours of the train database are 

probably not sufficient to draw definitive conclusions, 

this paragraph presents an analysis of the results 

obtained using this database. 

     First of all, Table 1 and Table 2 show that the use of 

syllabic bigram significantly improves performances 

compared to phonetic bigram with a gain of at least 5 

points on PER on the two basic systems, ASR_CI and 

ASR_F. Performances achieved by ASR_I and ASR_T 

also highlight the benefit of adapting models to syllables. 

The results presented in section 4 indicate that the best 

performances on Test_Ester are obtained by ASR_I with 

22.34% of PER. However, all of the tested systems have 

similar performances and accuracies, so the main 

difference will be made on processing speed and 

complexity. 

     ASR_CI results show that mixtures with a high 

number of Gaussians allow context-independent models 

to provide performances close to systems using context-

dependent ones. Of course, if more Gaussians are to be 

computed, this will slow down the decoding process, but 

these computations can be optimized if needed, as 

explained in [10], for example. 

     The context-expansion between syllables and the 

number of tied states make ASR_F much more complex 

and slower than the other systems with very similar 

results in the end. On the other hand, not using context-

expansion between syllables with these models increase 

the phoneme error rate (approximately 39% whereas 

ASR_F achieves 23.46% of PER). This is due to non-

adapted training of context-dependent models for 

syllables. 

     ASR_I deals with this issue by using an adapted 

training, resulting in a lower network complexity. 
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Consequently, ASR_I is 5 times quicker than ASR_F and 

achieves two times real-time decoding for a same beam 

threshold. In addition, ASR_I PER is one point better 

than ASR_F : this result highlights the fact that, in our 

context, an accurate coverage between syllables not 

necessarily improves the system. 

     ASR_T can be considered as a "light" ASR_I, which 

deals with half as many different states thanks to a 

maximal use of state-sharing. As a consequence, ASR_T 

is the best tradeoff between speed and performances, by 

achieving 23.19% of PER. 

 

 

6   Conclusion and further work 
We have presented the primary results of phonetic 

transcription on ESTER corpus. Four different systems 

have been tested and their results confirm the benefit of 

using syllables as phonetic transcription guidelines. Two 

of them give particularly interesting results. 

The first one is based on context-dependent models 

trained with an adaptation to syllables and performed 

with syllabic bigram and syllable internal context 

expansion. It gives a phoneme error rate of 22.34%. For 

this particular system, we also have introduced a new 

way of training context-dependent models. It is based on 

a syllabic creation of context-dependent labels in order 

to outperform systems using full cross syllable context 

expansion. The second one, based on transitory models 

and syllabic bigram, gives a phoneme error rate of 

23.19%. It offers the best tradeoff between performances 

and speed. 

     Future work will focus on extended language models, 

i.e trigram and more. Furthermore, it would be 

interesting to work on Gaussians optimizations in order 

to improve the processing speed. In the end, we will 

study the influence of these systems on wordspotting. 
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