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C. Mineŕıa, 1, Esc C. 1-3,
08038 Barcelona, Spain

E-mail: maria.isabel.garcia@upc.edu; M.Dolors.Magret@upc.edu

Abstract:- We consider the set of quadruples of matrices defining singular linear time-invariant
dynamical systems and show that there is a one-to-one correspondence between this set and
a subset of the set of polynomial matrices of degree two. This correspondence preserves the
equivalence relations introduced in both sets (feedback-similarity and strict equivalence): two
quadruples of matrices are feedback-equivalent if, and only if, the polynomial matrices associated
to them are also strictly equivalent. We characterize structurally stable polynomial matrices
(stable elements under small perturbations) describing singular systems and derive a lower bound
on the distance to the orbits of polynomial matrices with strictly lower dimension.
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1 Introduction
Singular systems arise in a number of sci-

entific and engineering applications. For ex-
ample, when modelling multibody systems in
robotics, in electrical circuit simulation, in
models of chemical processes, in fluid dynam-
ics, in optimal control theory, in the study of
Hamiltonian systems with constraints, in the
analysis of stiff differential equations, etc.

The study of singular systems began at the
end of the 1970s and attracted the interest of
many scientists, who studied not only the gen-
eralization of classical system theory results
but also specific ones. See, for example, [5]
for a complete survey on singular systems, or
[2], where a behavioral approach can be found.

Linear time-invariant singular systems
may be described by

{
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)
(1)

where E, A ∈ Mn(C), B ∈ Mn×m(C), C ∈
Mp×n(C) and rkE < n.

It is well known that the behavior of the
system (1) depends on the properties of the
matrix pencil αE − βA obtained as a natural
generalization of the matrix pencil λI−A con-
sidered for standard systems. System (1) and
the corresponding matrix pencil are called reg-
ular if det(αE−βA) 6= 0 for some (α, β) ∈ C2.

The necessary and sufficient condition for
the existence and uniqueness of the solution
to the system (1) is regularity. Many of the
results on the behavior of singular systems de-
pend on the assumption of regularity. When a
system is not regular, conditions may be stud-
ied to know whether the system can be regu-
larized; that is to say, it can be transformed
into a uniquely solvable closed loop system
(for any given control and consistent initial
values).

The matrix pencil αE−βA does not allow
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to know whether the system is regularizable.
Let us consider, for example, the system

( 1 0
0 0 )

(
ẋ(t)
ẏ(t)

)
= ( 0 1

0 0 )
(

x(t)
y(t)

)
+ ( 0

1 ) u(t)

This system is regularizable, since the feed-
back u(t) = y(t) + w(t) yields the close loop
system

( 1 0
0 0 )

(
ẋ(t)
ẏ(t)

)
= ( 0 1

0 1 )
(

x(t)
y(t)

)
+ ( 0

1 ) w(t)

which is uniquely solvable for every consistent
initial condition and any control w(t). But
the matrix pencil det(αE−βA) is not regular,
since det(αE − βA) = 0, for all (α, β) ∈ C2.
We conclude that this matrix pencil is not the
most suitable to obtain information about reg-
ularizable conditions. In [3], sufficient regular-
izability conditions are presented using state
and derivative feedbacks (regularity of the ma-
trix pencil det(αE − βA) is not required).

In this work, we will consider an alterna-
tive approach, associating to the quadruples
which define singular systems a special type
of polynomial matrices of degree two and in-
troducing in the space of polynomial matrices
the concept of “strict equivalence” which gen-
eralizes, in the natural way, the notion of strict
equivalence of matrix pencils.

The notion of structural stability has be-
come a central one in the study of systems
because of its practical importance. When a
dynamical system is structurally stable, small
perturbations (like those introduced by a nu-
merical approximation when simulating, or
noise in an experiment) will not qualitatively
alter the observed dynamics.

We will consider the concept of struc-
tural stability as appears in [9] and charac-
terize structurally stable polynomial matrices
related to singular systems.

In this paper we will make use of geometri-
cal techniques, similar to those which are used
in [1]: strict equivalence will be viewed as the
equivalence relation defined on the differen-
tiable manifold of polynomial matrices of de-
gree two related to singular systems by the
action of a Lie group acting on it, giving rise
to orbits which are in turn also differentiable

manifolds and the tangent spaces to orbits will
be described.

2 Polynomial matrices related
to singular linear systems

It is known that equivalent triples of matri-
ces defining regular systems, under the equiv-
alence relation derived from: basis changes in
the state, input and output spaces, state feed-
back and output injection, are those having
strictly equivalent associated matrix pencils
(see [8], for example). In this Section we show
a similar result in the case of quadruples of
matrices defining singular systems.

Let us now consider a linear time-invariant
singular dynamical system described by

{
Eẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

where E,A ∈ Mn(C), B ∈ Mn×m(C), C ∈
Mp×n(C) and rkE < n.

We will consider the following elementary
transformations: basis similarity for the state
space, basis changes for the control space, ba-
sis changes for the output space, output injec-
tion, state feedback, derivative feedback.

These transformations lead to the defini-
tion of the following equivalence relation on
the space of quadruples of matrices defining
singular linear time-invariant dynamical sys-
tems.

Definition 1 The quadruples (E1, A1,
B1, C1), (E2, A2, B2, C2) are feedback-similar
if, and only if, there exist matrices P ∈
Gln(C), R ∈ Glm(C), S ∈ Glp(C), U, V ∈
Mm×n(C) and W ∈ Mn×p(C) such that

(
P W
0 Q

)(
E1 A1 B1
0 C1 0

)(
P−1 0 0

0 P−1 0
V U S

)
=

(
E2 A2 B2
0 C2 0

)

That is to say, two quadruples of matrices
are said to be feedback-similar when one can
be obtained from the other by means of one, or
more, of the elementary transformations (1) -
(6) above.

This equivalence relation generalizes
block-similarity of pairs of matrices and
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equivalence of triples. In particular,
if (E1, A1, B1, C1), (E2, A2, B2, C2) are
feedback- similar, the pairs (E1, B1) and
(E2, B2) are block-similar and the triples
(A1, B1, C1) and (A2, B2, C2) are equivalent
(we referred to these equivalence relations at
the Introduction).

We associate to each quadruple describing
a singular system a polynomial matrix of de-
gree two and introduce in the set of polyno-
mial matrices an equivalence relation, strict
equivalence, which generalizes strict equiva-
lence for matrix pencils.

Definition 2 We will say that two polyno-
mial matrices M1(λ) and M2(λ) are strictly
equivalent when there exist constant regular
matrices L and R such that LM1(λ)R =
M2(λ).

Let us associate to the quadruple
(E,A, B, C) the polynomial matrix

M(λ) =
(

E A B
0 C 0

)
+ λ

(
I 0 0
0 0 0

)
+ λ2

(
0 I 0
0 0 0

)

We will denote by P the set of polyno-
mial matrices of degree two and by M ⊂ P
the subset of polynomial matrices of the type
above.

We can state now the main result in this
Section.

Theorem 1 (E1, A1, B1, C1) and
(E2, A2, B2, C2) are feedback-similar if, and
only if, M1(λ) and M2(λ) are strictly equiva-
lent.

Proof Let us assume (E1, A1, B1, C1) and
(E2, A2, B2, C2) feedback-similar. Then there
exist P ∈ Gln(C), R ∈ Glm(C), S ∈ Glp(C),
U, V ∈ Mm×n(C) and W ∈ Mn×p(C) such
that

(
P W
0 Q

) (
E1 A1 B1
0 C1 0

)(
P−1 0 0

0 P−1 0
V U S

)
=

(
E2 A2 B2
0 C2 0

)

It suffices to take

L =
(

P W
0 Q

)
, R =

(
P−1 0 0

0 P−1 0
V U S

)

Conversely. We assume that

L
[(

E1 A1 B1
0 C1 0

)
+ λ

(
I 0 0
0 0 0

)
+ λ2

(
0 I 0
0 0 0

)]
R =

(
E2 A2 B2
0 C2 0

)
+ λ

(
I 0 0
0 0 0

)
+ λ2

(
0 I 0
0 0 0

)

where

L =
(

L1 L2
L3 L4

)
, R =

(
R1 R2 R3
R4 R5 R6
R7 R8 R9

)

From this equality we conclude that L1 is
regular, R1 = L1

−1, L3 = 0, R2 = 0, R3 = 0,
R4 = 0 and R5 = 0.

Therefore (E1, A1, B1, C1) and (E2, A2, B2, C2)
are feedback-similar.

3 Characterization of struc-
turally stable polynomial ma-
trices in M

One of the goals of this work is to charac-
terize structurally stable polynomial matrices
related to singular systems. The effect of small
perturbations in the parameters, structural
stability and sensibility analysis are some of
the most studied problems in Control Theory.
The relevance of this concept is easy to un-
derstand: when a system is not structurally
stable, small perturbations may lead to great
changes in the behavior of the system. This is
specially important when considering families
of systems depending on parameters.

First we will recall the notion of structural
stability as introduced by Willems.

Definition 2 If M is a topological space
and ∼ is an equivalence relation defined on
M, x ∈ M is structurally stable when there
exists a neighborhood U of x such that x ∼ y
for all y ∈ U .

Remark 1 In the case where M is a dif-
ferentiable manifold and ∼ is the equivalence
relation defined by the action of a Lie group
acting on M, giving rise to orbits which are
also differentiable manifolds, if we denote by
O(x) the orbit of an element x ∈ X, we have
that the following statements are equivalent:

(a) x is structurally stable.

(b) O(x) is an open submanifold.

(c) dim O(x) = dim M.
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(d) dim TxO(x)⊥ = 0 (for any Hermitian
product considered).

Note that the set P of polynomial matri-
ces of degree two and order (n+p)×(2n+m),
and the subset M of P consisting of polyno-
mial matrices of degree two associated to sin-
gular linear time-invariant dynamical systems
are differentiable manifolds.

It is easy to check that the orbits under
the action of the Lie group

G = Gln+p(C)×Gl2n+m(C)

acting on P via

α : G × P −→ P

((L,R),M(λ)) −→ LM(λ)R

coincide with equivalence classes under strict
equivalence.

Using elementary theory of Lie groups, it is
straightforward to see that TM(λ)O(M(λ)) is
the set {LM(λ)+M(λ)R with L ∈ Mn+p(C),
R ∈ M2n+m(C)}. The orthogonal spaces to
the tangent spaces to the orbits would be eas-
ier to calculate, identifying them with the set
of solutions of suitable linear equations sys-
tems.

We consider in P the natural Hermitian in-
ner product deduced after to identify P with
C(2n+m)(n+p).

< M(λ), N(λ) >= tr(M0N̄
t
0)+tr(M1N̄

t
1)+tr(M2N̄

t
2)

if M(λ) = M0 + λM1 + λ2M2, N(λ) =
N0 + λN1 + λ2N2.

Theorem 2 Let M(λ) = M0 + λM1 +
λ2M2 ∈ P. Then N(λ) = X + λY + λ2Z
is an element of the orthogonal to the tangent
space to the orbit, with respect to the Hermi-
tian product considered above, if and only if,

M0X̄
t + M1Ȳ

t + M2Z̄
t = 0

X̄tM0 + Ȳ tM1 + Z̄tM2 = 0

}

Proof It follows from direct calculation
taking into account the description of the tan-
gent space to the orbit given above and the
Hermitian product defined on M.

If M(λ) ∈M we can restrict the orthogo-
nal to M. For that, we restrict the action to
the subgroup G0 = {(L,R) ∈ P} with

L =
(

P W
0 Q

)
, R =

(
P−1 0 0

0 P−1 0
V U S

)

it acts over M via

α0 : G0 ×M −→M

((L, R),M(λ)) −→ LM(λ)R

we can state the following result.
Theorem 3 If

M(λ) =
(

E A B
0 C 0

)
+ λ

(
I 0 0
0 0 0

)
+ λ2

(
0 I 0
0 0 0

)

is a matrix polynomial of degree two associated
to a singular system, then

(
X Y Z
0 T 0

)
+ λ

(
I 0 0
0 0 0

)
+ λ2

(
0 I 0
0 0 0

)

is an element of the orthogonal to the tangent
space to the orbit, with respect to the Hermi-
tian product considered above, if, and only if,

EX̄t − X̄tE + AȲ t − Ȳ tA + BZ̄t − T̄ tC =0
X̄tB =0
Ȳ tB =0
CȲ t =0
Z̄tB =0
CT̄ t =0





.

As consequences, we obtain the following
characterizations of structurally stable poly-
nomial matrices in P as well as in M.

Corollary 1 A polynomial matrix in P,
M(λ) = M0 +λM1 +λ2M2 is structurally sta-
ble under strict equivalence if, and only if, the
system

M0X1 + M1 Y1 + M2Z1 = 0
X1M0 + Y1M1 + Z1M2 = 0

}

has no non-trivial solutions.
Proof One only needs to take into account

that M(λ) is structurally stable under strict
equivalence if, and only if, dimO(M(λ))⊥ =
0.
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Corollary 2 A polynomial matrix M(λ) =
M0 + λM1 + λ2M2 in P is structurally stable
under strict equivalence if, and only if,

rankmP(M(λ)) = 2n2 + mn + 2np + mp

where mP(M(λ)) is the following matrix

mP(M(λ))=
(

In+p⊗M0 In+p⊗M1 In+p⊗M2

Mt
0⊗I2n+m Mt

1⊗I2n+m Mt
2⊗I2n+m

)

Proof It suffices to apply the vec-operator
and the Kronecker product to the equations
of TM(λ)O(M(λ))⊥.

Corollary 3 A polynomial matrix of de-
gree two M(λ) associated to a singular system
(E,A, B, C) is structurally stable under strict
equivalence if, and only if, the system





EX1 −X1E + AY1 − Y1A + BZ1 − T1C = 0
X1B = 0
Y1B = 0
CY1 = 0
Z1B = 0
CT1 = 0

has no non-trivial solutions.

Corollary 4 A polynomial matrix of de-
gree two M(λ) associated to a singular system
(E,A, B, C) is structurally stable under strict
equivalence if, and only if,

rankmM(M(λ)) = 2n2 + mn + np

where mM(M(λ)) is the following matrix

(
Et⊗I−I⊗E 0 0 −I⊗B 0 0
At⊗I−I⊗A 0 0 0 −I⊗B Ct⊗I

Bt⊗I −I⊗B 0 0 0 0
−I⊗C 0 Ct⊗I 0 0 0

)t

Remark The structurally stable character
of a two degree polynomial matrix M(λ) ∈M
associated to a singular system (E, A,B,C)
ensures that in a neighborhood of this system
all systems in it, are normalizable, stabilizable
and detectable.

4 A lower bound on the dis-
tance to a polynomial matrix

with orbit of strictly lower di-
mension

In this last Section, we will obtain a bound
for the distance between a structurally sta-
ble polynomial matrix associated to a singular
system and the nearest one not being struc-
turally stable. That is to say, a bound for
the value of the radius of a ball which is a
neighborhood of a structurally stable polyno-
mial matrix containing only elements which
are also structurally stable.

More concretely, we will obtain a bound
for the distance between a polynomial matrix
inM and the nearest polynomial matrix inM
having an orbit of strictly lower codimension,
with respect to strict equivalence. To do this,
we will proceed in a similar way to that in [6],
in the case of matrix pencils related to pairs
of matrices under block-similarity, or that in
[4].

The starting point is the relationship be-
tween the polynomial matrix M(λ) and the
Frobenius norm of the matrices mP(M(λ)) or
mM(M(λ)) (for the definitions on norms of
matrices see, for example, [7]), given in terms
of a constant depending only upon the order
of the matrices defining the system.

Theorem 4 For a given polynomial ma-
trix M(λ) ∈ P (or ∈ M with orbit of codi-
mension d, a lower bound on the distance to
the nearest polynomial matrix N(λ) having an
orbit of strictly greater codimension is given by

1√
3n + m + p

σ2n2+mn+2np+mp−d(mP(M(λ))),

(or
1√

3n + m + p
σ2n2+mn+np−d(mM(M(λ))))

where σ1 ≥ · · · ≥ σ2n2+mn+2np+mp, (or σ1 ≥
· · · ≥ σ2n2+mn+np) denote the non-zero singu-
lar values of mP(M(λ)), (mM(M(λ))).

Proof The smallest perturbation in the
Frobenius norm that reduces the rank of
mP(M(λ)) from 2n2 + mn + 2np + mp− d to
2n2 +mn+2np+mp− d−α (or that reduces
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the rank of mM(M(λ)) from 2n2+mn+np−d
to 2n2 + mn + np− d− α)is:
√

2n2+mn+2np+mp−d∑
i=2n2+mn+2np+mp−d−α+1

σ2
i (mP(M(λ))) ≥

σ2n2+mn+2np+mp−d(mP(M(λ)))

(or
√

2n2+mn+np−d∑
i=2n2+mn+np−d−α+1

σ2
i (mM(M(λ))) ≥

σ2n2+mn+np−d(mM(M(λ)))

) (Eckart-Young-Mirsky Theorem). Then we
only need to apply the following (not diffi-
cult to prove) relationship: ‖mP(M(λ))‖2

F =
(3n + m + p)‖M(λ)‖2

F , (or ‖mM(M(λ))‖2
F ≤

(3n + m + p)‖M(λ)‖2
F ).

As a consequence, we obtain a bound
for the distance between a structurally stable
polynomial matrix in M under strict equiva-
lence and the nearest non-structurally stable
one in M.

Corollary 5 For a given structurally sta-
ble polynomial matrix M(λ) ∈ P (or ∈ M
a lower bound on the distance to the near-
est non-structurally stable polynomial matrix
N(λ) is given by

1√
3n + m + p

σ2n2+mn+np(mP(M(λ)))

(or

1√
3n + m + p

σ2n2+mn+np(mM(M(λ)))

) where σ2n2+mn+np denotes the smallest
non-zero singular value of mP(M(λ)), (or
mM(M(λ))).

5 Conclusion
In this work a controllability matrix for

second order generalized linear systems in the
form Eẍ = A1ẋ+A2x+Bu, is presented. This
matrix depends only on the matrices E, A1, A2

and B defining the system and gives us a sim-
ple method to analyze the controllability of
the system.
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