Controllability matrix of second order generalized linear systems

Ma I. GARCÍA-PLANAS
Universitat Politècnica de Catalunya
C. Minería, 1, Esc C. 1-3, 08038 Barcelona, Spain

Abstract:- Let $\left(E, A_{1}, A_{2}, B\right)$ be a quadruple of matrices representing a two-order generalized time-invariant linear system, $E \ddot{x}=A_{1} \dot{x}+A_{2} x+B u$.

In this paper we study controllability of second order generalized systems by means the rank of a certain matrix that we will call controllability matrix of second order generalized linear systems.

Key-Words:- Linear systems, Feedback equivalence.

1 Introduction

The study of generalized linear systems have a great interest in recent years. First order are applied in engineering for example they are used in modelling a three-link planar manipulator by M. Hou [10]. Second order generalized systems are applied to power systems by Campbell and Rose [1].

A second order generalized linear system is described by the following state space equation

$$
\begin{equation*}
E \ddot{x}=A_{1} \dot{x}+A_{2} x+B u, \tag{1}
\end{equation*}
$$

where A_{i} are n-square complex matrices and B a $n \times m$-rectangular complex matrix in adequate size. We denote this kind of systems by quadruples of matrices (E, A_{1}, A_{2}, B), and the space of all quadruples by $\mathcal{M}_{n, m}$:

$$
\begin{gathered}
\mathcal{M}_{n, m}=\left\{\left(E, A_{1}, A_{2}, B\right) \mid E, A_{1}, A_{2} \in M_{n}(\mathbb{C}),\right. \\
\left.B \in M_{n \times m}(\mathbb{C})\right\}
\end{gathered}
$$

One of the problems for a control theory is to maintain stability and controllability of the system. If the system is not stable and/or not controllable then ones would like to chose the control variables u in such a way that the re-
sulting system is stable and controllable. Suppose that the control variables are chosen as $u=-F_{3} \ddot{x}+F_{1} \dot{x}+F_{2}+v$, then the system becomes $\left(E+B F_{3}\right) \ddot{x}=\left(A_{1}+B F_{1}\right) \dot{x}+\left(A_{2}+\right.$ $\left.B F_{2}\right) x+v$. This system is called close-loop system while the system (1) is called openloop system.

Controllability is a qualitative property of second order linear dynamical systems largely studied (see [9], [11], [5], [6], [8], [12] for example). In this paper we will go to study the controllability property for second order generalized linear systems.

2 Controllability

A second order generalized linear system is called controllable if, for any $t_{1}>0$, $x(0), \dot{x}(0) \in \mathbb{C}^{n}$ and $w, w_{1} \in \mathbb{C}^{n}$, there exists a control $u(t)$ such that $x\left(t_{1}\right)=w, \dot{x}\left(t_{1}\right)=w_{1}$.

It is well known (see [4], for example), the following result.

Proposition $2 A$ second order general-
ized linear system $\left(E, A_{1}, A_{2}, B\right)$, is controllable if and only if
i) $\operatorname{rank}\left(\begin{array}{ll}E & B\end{array}\right)=n$
ii) $\quad \operatorname{rank}\left(s^{2} E-s A_{1}-A_{2} \quad B\right)=n \quad \forall s \in \mathbb{C}$.

Remark 1 Condition i) ensures that there exists a second order derivative feedback F such that $E+B F$ is regular and premultiplying the system by $(E+B F)^{-1}$ the new system is standard. We will call standardizable the systems verifying this property.

In this paper we show that we can study controllability computing the rank of a certain matrix.

We consider the following $2 n^{2} \times((2 n-$ 2) $n+2 n m)$-matrix that we will call controllability matrix.

Remark 2

i) If $n=1, \mathcal{C}=\left({ }^{B}{ }_{B}\right) \in M_{2 \times 2 m}(\mathbb{C})$,
ii) If $n=2, \mathcal{C}=\left(\begin{array}{cccccc}-E & 0 & B & 0 & 0 & 0 \\ -A_{1} & -E & 0 & B & 0 & 0 \\ A_{2} & -A_{1} & 0 & 0 & B & 0 \\ 0 & A_{2} & 0 & 0 & 0 & B\end{array}\right) \in$

$$
M_{8 \times(4+4 m)}(\mathbb{C}),
$$

iii) If $m=1$, the matrix \mathcal{C} is square.

The controllability character of a system is related to the rank of this matrix, as we can see in the following theorem.

Theorem $1 A$ second order generalized linear system $\left(E, A_{1}, A_{2}, B\right) \in \mathcal{M}_{n, m}$, is controllable if and only if the controllability matrix \mathcal{C}, has full rank:

$$
\operatorname{rank} \mathcal{C}=2 n^{2}
$$

For the proof we need some lemmas
Considering $X=\binom{x}{\dot{x}}$, we can rewrite the second order generalized linear system (1) as a generalized linear system

$$
\begin{equation*}
\mathbb{E} \dot{X}=\mathbb{A} X+\mathbb{B} u \tag{2}
\end{equation*}
$$

with $\mathbb{E}=\left(\begin{array}{cc}I_{n} & 0 \\ 0 & E\end{array}\right), \mathbb{A}=\left(\begin{array}{cc}0 & I_{n} \\ A_{2} & A_{1}\end{array}\right)$ and $\mathbb{B}=$ $\binom{0}{B}$, we will call this system reduced system.

Lemma 1 Controllability of the second order generalized system (1) is equivalent to the controllability of the reduced system (2).

Proof.

i) $\quad \operatorname{rank}(\mathbb{E} \quad \mathbb{B})=n+\operatorname{rank}\left(\begin{array}{ll}E & B\end{array}\right)$.
ii) $\quad \operatorname{rank}(s \mathbb{E}-\mathbb{A} \mathbb{B})=$

$$
\begin{aligned}
& \operatorname{rank}\left(\begin{array}{cc}
\left.s\left(\begin{array}{ll}
I & 0 \\
0 & E
\end{array}\right)-\left(\begin{array}{cc}
0 & I \\
A_{2} & A_{1}
\end{array}\right)\binom{0}{B}\right)= \\
\operatorname{rank}\left(\begin{array}{ccc}
s^{2} E-s A_{1}-A_{2} & 0 & B
\end{array}\right)= \\
n+\operatorname{rank}\left(s^{2} E-s A_{1}-A_{2}\right. & B
\end{array}\right) .
\end{aligned}
$$

Lemma 2 The generalized linear system (2), is controllable if and only if the generalized controllability matrix for generalized linear systems $M_{2 n-1} \in M_{2 n^{2} \times(2 n-1)(n+2 m)}(\mathbb{C})$,
has full rank: rk $M_{2 n-1}=2 n^{2}$.
See [7] for a proof.
Now we can prove Theorem 1.
Proof. For our case the matrix $M_{2 n-1}$ has the form
$\left(\begin{array}{cccccccccc}I & 0 & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ 0 & E & \ldots & 0 & 0 & B & 0 & \ldots & 0 & 0 \\ 0 & I & \ldots & 0 & 0 & 0 & 0 & \ldots & 0 & 0 \\ A_{2} & A_{1} & \ldots & 0 & 0 & 0 & B & \ldots & 0 & 0 \\ & & \ddots & & & & & \ddots & & \\ 0 & 0 & & I & 0 & & & & 0 & \\ 0 & 0 & & 0 & E & & & & B & 0 \\ 0 & 0 & & 0 & I & & & & 0 & 0 \\ 0 & 0 & & A_{2} & A_{1} & & & & 0 & B\end{array}\right)$

Making block-elementary row transformations to the matrix, we obtain that it is rank equivalent to

The rank of this matrix is

$$
=2 n^{2}+\mathrm{rk}\left(\begin{array}{cccccccccc}
-E & 0 & \cdots & 0 & B & 0 & 0 & 0 & 0 & 0 \\
-A_{1} & -E & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
A_{2} & -A_{1} & \cdots & 0 & 0 & 0 & B & 0 & 0 \\
& & \ddots & & & & & & 0 & 0 \\
0 & 0 & \cdots & -E & \cdots & 0 & 0 & & 0 & 0 \\
0 & 0 & \cdots & -A_{1} & \cdots & 0 & 0 & 0 & 0 \\
0 & 0 & \cdots & A_{2} & \cdots & 0 & 0 & 0 & 0 & 0
\end{array}\right)=r
$$

and $r=4 n^{2}$ if and only if

$$
\mathrm{rk}\left(\begin{array}{cccccccccc}
-E & 0 & \cdots & 0 & B & 0 & 0 & 0 & 0 & 0 \\
-A_{1} & -E & \cdots & 0 & 0 & A_{1} & 0 & 0 & 0 & 0 \\
A_{2} & -A_{1} & \cdots & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & & \ddots & & & B & 0 & 0 & 0 \\
0 & 0 & \cdots & -E & & & 0 & & \\
0 & 0 & \cdots & -A_{1} & \cdots & 0 & B & 0 & 0 \\
0 & 0 & \cdots & A_{2} & \cdots & 0 & 0 & 0 & B & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=2 n^{2}
$$

Now, we present some examples,

Example 1

Let $\left(E, A_{1}, A_{2}, B\right)$ be a quadruple with $E=\left(\begin{array}{ll}1 & 2 \\ 1 & 2\end{array}\right), A_{1}=\left(\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right), A_{2}=\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)$, $B=\binom{1}{0}$,
$\mathrm{rk}\left(\begin{array}{cccccccc}-1 & -2 & 0 & 0 & 1 & 0 & 0 & 0 \\ -1 & -2 & 0 & 0 & 0 & 0 & 0 & 0 \\ -1 & -1 & -1 & -2 & 0 & 1 & 0 & 0 \\ -1 & 0 & -1 & -2 & 0 & 0 & 0 & 0 \\ 0 & 1 & -1 & -1 & 0 & 0 & 1 & 0 \\ 1 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0\end{array}\right)=8$.
Then, the system is controllable.
Example 2 Let $\left(E, A_{1}, A_{2}, B\right)$ be a quadruple with $E=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), A_{1}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$, $A_{2}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), B=\binom{0}{1}$,

Then, the system is not controllable.

Example 3

Let $\left(E, A_{1}, A_{2}, B\right) \in \mathcal{M}_{n, m}$ be a twoparametric family of quadruples of matrices with $E=\left(\begin{array}{lll}1 & 3 & 1 \\ 3 & 1 & 1 \\ 0 & 0 & 0\end{array}\right), A_{1}=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 3 & 1 \\ 0 & 0 & 0\end{array}\right)$, $A_{2}=\left(\begin{array}{ccc}\lambda & 3 \lambda & \lambda \\ 3 \lambda+\mu & \lambda+\mu & \lambda+3 \mu \\ 0 & 0 & 0\end{array}\right), B=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$.

The matrix

$$
\mathcal{C}=\left(\begin{array}{cccccccccc}
-E & 0 & 0 & 0 & B & 0 & 0 & 0 & 0 & 0 \\
-A_{1} & -E & 0 & 0 & 0 & B & 0 & 0 & 0 & 0 \\
A_{2} & -A_{1} & -E & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & A_{2} & -A_{1} & -E & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & A_{2} & -A_{1} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & A_{2} & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline
\end{array}\right),
$$

has full rank if and only if $\lambda \neq 0$. That is to say, the quadruples of the given family are controllable if and only if $\lambda \neq 0$.

Observe that it is easier to compute $\operatorname{rank} \mathcal{C}$ than $\operatorname{rank}\left(s^{2} E-s A_{1}-A_{2} \quad B\right)$ for all $s \in \mathbb{C}$.

3 Controllability indices

As in the generalized systems we can study the degree of controllability. We consider the following matrices
$\mathcal{C}_{0}=\left(\begin{array}{ll}B & \\ & B\end{array}\right)$,
$\mathcal{C}_{1}=\left(\begin{array}{cccc}-E & B & & \\ -A_{1} & 0 & B & \\ A_{2} & 0 & 0 & B\end{array}\right)$,
$\mathcal{C}_{2}=\left(\begin{array}{cccccc}-E & 0 & B & & & \\ -A_{1} & -E & 0 & B & & \\ A_{2} & -A_{1} & 0 & 0 & B & \\ 0 & A_{2} & 0 & 0 & 0 & B\end{array}\right)$
\vdots
$\mathcal{C}_{2 n-2}=\mathcal{C}$
and the following numbers
$r_{-1}=\operatorname{rank} B$
$r_{0}=\operatorname{rank} \mathcal{C}_{0}$,
$r_{1}=\operatorname{rank} \mathcal{C}_{1}$,
$r_{2}=\operatorname{rank} \mathcal{C}_{2}$,
\vdots
$r_{2 n-2}=\operatorname{rank} \mathcal{C}_{2 n-2}$.
measuring the controllability degree.
It is not difficult to prove that the conjugate partition of $r_{0}-r_{-1}, r_{1}-r_{0}, \ldots, r_{2 n-2}-$ $r_{2 n-3}$, is the collection of controllability indices of the triple $(\mathbb{E}, \mathbb{A}, \mathbb{B})$.

5 Conclusion

In this work a controllability matrix for second order generalized linear systems in the form $E \ddot{x}=A_{1} \dot{x}+A_{2} x+B u$, is presented. This matrix depends only on the matrices E, A_{1}, A_{2} and B defining the system and gives us a simple method to analyze the controllability of the system.

References

[1] S.L. Campbell, N.J. Rose, A second order singular system arising in electric power analysis. Int. J. Systems Science, 13, pp. 101-108, (1982).
[2] Y.S. Chou,C.C. Lin, Y.H Chen, Robust controller designs for systems with real parametric uncertainties. Proceedings of WSEAS Int. Conf. on Circuits, Systems, Signal and Telecommunications. pp. 174180, (2007).
[3] Y.S. Chou,C.C. Lin, Y.H Chen, A bmi approach to robust controller design for systems with real parametric uncertainties. Proceedings of WSEAS Int. Conf. on Circuits, Systems, Signal and Telecommunications. pp. 181-186, (2007).
[4] J. Clotet, Mํ I. García Planas, Second order generalized linear systems. A geometric approach. Int. Journal of Pure and Applied Maths. vol. 21, (2), pp. 269-276, (2005).
[5] G. Duan, Y. Wu, Reduced-order observer design for matrix second-order linear systems Intelligent Control and Automation, WCICA 1, (15-19), pp 28-31, (2004).
[6] G. Duan, Y. Wu, M. Zhang, Robust fault detection in matrix second-order linear systems via Luenberger-type unknown input observers: a parametric approach. Control, Automation, Robotics and Vision Conference, 2004. 3, (6-9), pp. 1847 - 1852, (2004).
[7] M. I. García-Planas Controllability indices for multi-input singular systems. ICM 2006, (2006).
[8] R. George, J. Sharma, Controllability of Matrix Second Order Systems - A Trigonometric Matrix Approach by Raju K George. Fifth International Conference on Dynamic Systems and Applications. (2007).
[9] A.M.A. Hamdan, A.H. Nayfeh, Measures and modal controllability and observability for first and second order linear systems. AIAA Journal of guidance control and dynamics, vol. 2, (3), pp. 421-429, (1989).
[10] M. Hou, Descriptor Systems: Observer and Fault Diagnosis. Fortschr-Ber. VDI Reihe 8, Nr. 482. VDI Verlag, Düsseldorf, FRG (1995).
[11] P.C. Hughes, R.E. Skelton, Controllability and observability of linear matrix second order systems. Journal of Applied Mechanics vol 47, (1980).
[12] Ph. Losse, V. Mehrmann, Controllability and observability of second order descriptor systems. Preprint (2006).

