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Abstract: - In presented paper a design model is developed which is used to find an optimal design space  in order to 
improve precision and accuracy of reversed 3D models. Significant parameters and their mutual effects in scanning 
process are  recognized  with the help of Design of Experiments (DOE) principles, and in second step recognized 
significant parameters are also optimized using the RSM (Response Surface Methodology). Back propagated neural 
network is used for prediction of response factors whose input variables are not possible to set during experimentation 
due to the nature of the scan device.  With neural network (NN)  predicted response-design data, the Analysis of 
Variance (ANOVA) test was performed. On a basis of significant parameters the analytical model is established, which 
enables prediction and optimization of critical scan parameters, according to the prescribed standard deviation 
(abberation)  of analysed  3D CAD models.  After getting knowledge about  the relationships between  significant 
parameters  it is possible to predict and optimize them using a model  established in the RSM on a basis of D-optimal 
Design of Experiment test (DOE). At the end also the precision assessment of predicted response factors by DOE 
approach and by neural network approach is done and results are beeing compared. 
 
Key-Words: - DOE, Neural network,  ANOVA, D-optimality, RSM  
 
1 Introduction 
Like in any technical process, as for instance cutting, 
deep drawing, injection molding, etc., it is also possible 
to define a model of laser scanning process in reverse 
engineering discipline. Laser scanning process is quite a 
complex process, where many different factors interacts 
simultaneously and their mutual effects are not always 
easy to predict. Generally, all parameters which appear 
in a scanning process, can be divided in three groups: 
optical inside process parameters, cnc machine 
parameters, and external parameters, which are hard or 
impossible to control or predict. 
In a modern literature there is not much work, which 
would describe a laser scanning process on an 
input/output process box basis. There are many 
contributions which investigate usually one or two 
parameters and their influence on a quality (precision) of 
laser scann results [1,2,3], but there are practically no 
scientific investigations which would describe a process 
as a whole, taking into account wide range of  crucial 
parameters and their mutual interactions, and moreover 
there are very few attempts of optimizing those factors [ 
4 ], or even less to predict them.  
There are a few good accesses which investigated the 
influence of free form surface lean angle and distance of 
laser head from scanned object on quality of 
reconstructed surface [5,6], but we seriously believe that 
in order to establish a reliable model of scanning 
process, at least the mayority of most important  possible 

input scan parameters should be considered. But in this 
area it is noticeable lack of  scientific contributions and 
investigations. Mostly there are only recomendations of 
some laser scann device producers, which are fitted only 
to their particular developed device, or are only 
inteneded for use in calibration process [7,8]. 

 
2 Statistical modelling approach to 

investigated process 
When a large number of  process influencing factors 
have to be investigated, it is a reasonable way, to 
consider and study all kinds of statistical based 
experimental designs, that should already be considered 
when preparing experiments, which will make our 
experimental data base for setting the model of 
investigated process.  
In statistical theory there is a technical definition of the 
amount of information in an experimental design, and 
maximizing D criterion corresponds to maximizing the 
information content in this sense. Commonly used 
designs for first/second order response surface models 
include Factorial and Fractional Factorial designs, 
Central Composite Designs (CCD), Box-Behnken 
designs etc.  These work well with regularly shaped 
design spaces and small number of variables. For non-
regular spaces, such as those encountered in many 
engineering problems with constraints, computer 
algorithms have been developed for choosing the best set 
of designs based on minimizing certain statistical 
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criteria. Amongst the most popular such criterion is D-
Optimality. [9] 
The optimization capability of scan process in presented 
paper is based on Response Surface Methodology 
(RSM) performed with data set constructed on a basis of 
D-optimal criterion. D-Optimality criterion is used for 
the effective distribution of sampling points which 
enables generalization of the design response. A design 
is said to be D-optimal, if inverse product  

( ) 1X X −′
  (1) 

is minimized, where X is the matrix of design point 
vectors, and X'X is a simulation matrix [10]  D-Optimal 
design minimizes the maximum variance of any 
predicted value. The algorithm used to find  D-optimal 
design is as follows [11]: 
1. Select a non-singular initial design of p points (central 
composite design in presented paper) 
2. Pick the candidates point with the largest Euclidean 
norm as the first design point. This first point will be one 
of the perimeter design points, i.e., one of the points 
furthest from the center of the design space. 
3. Pick each subsequent design point to give the 
maximum information about the estimable linear 
combinations of model coefficients and to increase the 
rank of the design matrix.  
 
 
2.1 Response Surface Methodology as a 

method used for model evaluation 
Response Surface Methodology (RSM) is a collection of 
statistical and mathematical techniques used for 
developing, improving and optimizing the mathematical 
described design process. RSM encompasses a point 
selection method (also referred to as Design of 
Experiments), Approximation methods and Design 
optimization methods to determine optimal settings of 
the design dimensions. RSM has important applications 
in the design, development, and formulation of new 
products, as well as in the improvement of existing 
product designs. A Successive Response Surface 
Methodology allows convergence of the design 
response. A space filling sampling scheme is used to 
update the sampling set by maximizing the minimum 
distances amongst new and existing sampling points. 
Main part of RSM is analysis of variance (ANOVA) to 
estimate accuracy of the fitted model and to provide 
statistical guidelines to adjust the model for an improved 
fit. However, as the number of variables increases, this 
criterion becomes rapidly intractable as the associated 

combinatorial optimization problem becomes extremely 
complex. The most widely used models in RSM are the 
linear and quadratic models (first/second degree 
polynomials) because of the wealth of experience 
associated with them and also because the DOE methods 
developed are mostly limited to linear/quadratic models 
[12]. 
 
3   Identification of process modelling  

parameters 
Schematic overview of presented scan model process 
with involved model parameters is shown on figure 1. 
Investigation was performed on seven input and two 
output parameters. Two of input parameters are 
uncontrollable and depend on instantaneous light 
circumstances.  
It is supposed that modelling of scan process deals with 
the identification of the process transfer function denoted 

by ( )⋅f  that represents the relation between the outputs 
Y and the inputs X, considering random process 
disturbances Z(X) causing system fluctuations:  
= +( , ) ( )f ZY βX X   (2) 

Generally, process transfer function ( )⋅f  with unknown 

structure and parameters β  can be modelled via ( )⋅g  
[13]: 

= ˆˆ( ) ( , )gY X βX   (3) 

where Ŷ  represents the modelled output, and β̂  the 
estimated model parameters [13]. 
Identification of complex process transfer functions can 
be approached on a system level.  
 

 
Fig. 1. Identification of  model parameters 

 
On a basis of scanned point clouds the response factors 
(R1,R2) presented in historical data modeling vector in 
Table 1. were determined. 

 
Table 1.  Data model vector construction 
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There are 74 such model vectors included in an 
experimental data set (also called Historical data set), 
each consisting of input (setted) and output (measured) 
parameters. Each model vector consist of 7 input factors 
(2 numerical and 5 categorical) and 2 output numerical 
parameters. These parameters have indirect influence on 
later surface acquisition and its accuracy in final 3D 
reversed model, therefore should be well chosen. [14,15] 
Input and response factors studied in presented paper are 
the following: 
-line width is a common name and it means the width of 
a scanning line measured in pixels 
-noise is a nondimensional value for measuring external 
disturbances, and tells about efficiency of laser beam 
-feed rate is a drive speed of kreon scanning head fixed 
on a CNC machine spindle, as shown in figure 2. and it 
travelles in one of machine axes directions. Three values 
which were used are: 2.5mm/s, 5.0mm/s and 10mm/s. 
-integration time in seconds has five values: 0.001s, 
0.002s, 0.004s, 0.008s and 0.017s. It means time of laser 
beam integration in CCD camera [15] 
-power of laser beam has three values: 2mW, 2.5mW, 
and 4mW 
-setted pitch is a distance between measured points in X 
and Y direction. Values used are: 0.1mm, 0.2mm, and 
0.3mm. 
-point density means which sequential point was 
measured in axes direction, and it has values: 1by1, 
1by2, amd 1by4 
-standard deviation of reversed CAD model from point 
cloud as a statistical measure for quality of reversed 
model 
-number of points represents number of scanned points 
in reversed CAD model 
 
 
3.1  Adapted milling machine for laser scanning 

operation 
This 3D non-contact measurement system consists of an 
X,Y,Z-table from the Flexmatic company (SLO), a 1D 
laser displacement sensor type Zephyr KZ-50 from the 
Kreon company  (France), a PC-486 computer and 
multifunction interface cards PCL-711, PCL-726 and 
PCL-833 from the Advantech company. The layout of 
this 3D measuring system is shown in Fig. 2. The 
X,Y,Z-measuring table is driven by a.c. servo motors. 
The encoder for each a.c.  servo motor has a resolution 
of 2000 pulses per revolution.  Drivers for the a.c. servo 
motors are of the voltage control type. A multifunction 
interface card, PCL-833, which includes three channel 
encoders and counters, was used to read in the 
displacement data for each axis. The table was controlled 
using PC controller. The  accuracy of the measuring 
table is 0.01 mm for each axis. The interface card PCL-

711 has a 12 bit A/D channel to read in the laser 
displacement data. Divisibility of laser sensor is 
0.005mm, and repeatability is 0.006mm. Hence, the 
measuring accuracy is 0.01 mm for the laser sensor. The 
control system was controlled by PC  that was used to 
handle all the I/O data for the system and to calculate the 
control parameters. 

                 
Fig. 2.  3D non-contact measurement structure, adapted 
to 3 axis milling machine 
 
Machine information is used to find the position of the 
laser plane in 3D space. This allows us to create a 
transformation matrix between the UV sensor system of 
coordinates and the object in XYZ world coordinates. 
This information has to be perfectly synchronized with 
video scanned data. CNC machine is moving along paths 
programmed by Kreon software, named Polygonia. 
Connection through RS232 serial link. on the »fly« 
mode requires the retrieval of data from the machine 
encoders. [16,17] Positions can be captured while the 
machine is moving, using Kreon's real time electronics 
process unit. Machine and laser head is shown in figure 
2. As a scan object six-angles steel bars were used, 
painted in green, red and blue color. Red, green and blue 
are colors that represents RGB scale and are part of any 
mixed color on arbitrary objects in praxis. These bars are 
convenient to establish a design model of a process, 
because their height is uniform in length and surface 
break has the same angle in all scanning length. So it 
was possible to set the best uniform optimal distance 
between object and camera for all exemples. The length 
of scan snaps was 75 mm for all 74 examples.  
 
 
4 Problem formulation 
It is impossible to exactly set some of input parameters 
as prescribed with the D-optimal test, due to the  
technical properties of Kreon scanning head and 
posibilities of Polygonia software interface which is used 
to controll and drive Kreon scanning head. For five 
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parameters only values of a few levels (3 or 5) are 
possible to set, so they are not possible to set as 
continuous numeric values. There are also two 
parameters (line width and noise) which are not possible 
to adjust by any mean, although they change themselves 
according to the experiment conditions. So problem 
arises how to exactly match the prescribed values (which 
are to be followed in D-optimal test), with the actual 
feasible values. This problem will be overcome with the 
use of neural network for output parameters prediction 
on a basis of input parameters which were not possible 
to set  during experimentation. After prediction of output 
parameters, it is possible to perform ANOVA analysis in 
D-optimal DOE procedure.  
Bad alternative would be  use of RSM on a basis of 
Historical data sets (these are data not obtained in DOE) 
instead of D-optimal test, but in praxis Historical data 
sets are omitted.  There are some significant lacks of 
Historical data sets yield within DOE procedure. 
Instability is typical of models based on Historical data 
sets. Many times factors are mutual aliased, which 
means that there are not enough unique design points to 
independetly estimate all the coefficients for such 
models. So model could become unstable. That is why in 
Historical DOE  many times the order of the model must 
be downgraded to linear to avoid aliasing coefficients. 
[18] 
 
 
5 Data acquisition for –D- test  using 

back propagated neural network 
As stated in Chapter 2. the Historical data set consists of 
74 model vectors. Seven input parameters of this data set 
are feed into back propagated neural network, which is 
trained and later used for prediction of output parameters 
for D-optimal data set. After introducing  D-optimal test 

inside DOE software, the data set was reduced to 52 
modelling vectors. 
 
5.1 Construction and training of neural network  
The most common neural network model is the 
multilayer perceptron (MLP). Let us suppose that the 
scanning process can be modelled by a two hidden-
layered network as: 

( )β
=

= = +∑
1

ˆˆ ˆ( ) ( , , , ) tanh
K

T
i j j ij j j

j
Y g b bX β X a a X

  (4) 

where ( )⋅g  is represented by K neurons with hyperbolic 
tangent sigmoidal basis function with synaptic weights, 

ja , threshold parameter, jb , and linear neuron with 

synaptic weights, β β= 1
ˆ ˆ ˆ( ,..., )i i iKβ  [3]. The learning 

algorithm is called momentum backpropagation. 
 
Neural network consists of 4 layers: input, two hidden 
and one output layer. Input layer has 7 neurons, for each 
input one. First hidden layer has 7 neurons or processing 
elements, second five, and output layer has two neurons, 
each for one output. 
 This type of neural network is known as a supervised 
network because it requires a desired output in order to 
learn. The goal of this type of network is to create a 
model that correctly maps the input to the output, using 
historical data organized in a data vector from figure 2., 
and gathered with Kreon scan head mounted on a 3 axes 
CNC milling machine as shown in figure 3. After 
training,  the model can be used to produce the output 
when the desired output is unknown. Figure 3. shows 
learning curves for both the training and cross validation 
data sets as well as the mean squared error (MSE) 
achieved during training. [11] 
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Fig. 3.  a)Learning curves of training and cross validation data sets; b) neural network tested on 11 unknown 3D 
models; c) sensitivity analysis for weight changes during training; d) neural network performance estimation 
 
Network weights are automatically saved at the point 
where the cross validation error is at the lowest value. 
For the example above, the weights were saved after 
epoch number 116. The true power and advantage of 
neural networks lies in their ability to learn relationships 
directly from the data being modeled.  
Sensitivity analysis found out how much particular input 
parameter contributed to the weight changes during 
neural network processing. The contribution of particular 
parameter on weight changes in % is as presented in 
figure 3c. It is obvious that first four parameters have 
greatest influence during neural network training 
process.  These parameters will be also shown in next 
chapter to be the most significant in ANOVA test. .  
For testing purposes  11 exemplars (15%) of 74 model 
vectors were left aside and prediction with the trained 
NN was done for those 11 models, whose outputs were 
not known to the neural network.  Figure 3b.. shows the 
comparison of desired and actual network outputs. 
The trained network will be used for prediction of output 
data as prescribed by D-optimal design test (52 
modelling vectors), because this is the only way to 
obtain output values for D test, due to the constrain 
posibilities of parameter settings in experimental 
procedure.  
 
 
6 Checking for model adequacy and its 

verification 
The right model was evaluated and selected, according 
to the evaluation analysis whose result is shown in Table  

 
2. It is important that chosen model is most significant 
and that it is not aliased. Small Prob > F value (less than 
0.05) indicates that there is a strong model effect, while 
values greater than 0.10 suggest no significant effects. 
 
Table 2. Model selection table in ANOVA analysis 

 
 
Selected is the most significant model (linear vs mean), 
which is also suggested in a Table 2. The high F-value of 
174.08 in table 2. associated with the linear model means 
ratio of the Model SS / Residual SS and shows the 
relative contribution of the model variance to the 
residual variance. A large number indicates more of the 
variance being explained by the model; a small number 
means the variance may be more due to noise. 
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 7 Anova test of predicted D-optimal 
data set 

 
Table 3. Analysis of variance for standard deviation 

 
 
The Model F-value of 174.08 in Table 3. implies the 
model is significant.  There is only a 0.01% chance that a 
"Model F-Value" this large could occur due to noise. 
Values of "Prob > F" less than 0.05 indicate model terms 
are significant In this case A, B, C, D, E are significant 
model terms Values greater than 0.10 indicate the model 
terms are not significant If there would be many 
insignificant model terms, then some measures should be 
taken in order to improve the existing model. But this is 
not the case in presented model. Selected significant 
parameters are also in well agreement with sensitivity 
analysis of neural network weights shown in figure 3, 
which is one more proof that the design model was well 
chosen.  
 
Table 4. Analysis of variance for number of points 

 
 
Table 4. shows significant terms for response factor 
»number of points«. In this case most significant 

parameters indicated are C »feed rate«,  D »integration 
time« and G »point density«. This was also expected 
since it is obvious that travelling speed of scan head and 
density of points picking  should influence the scan point 
number in a great deal. This is also one more 
confirnation that the model was well chosen. Particular 
important are parameters C and D, because they have a 
great influence in std.dev. as well as in point number 
prediction. It will be shown in chapter 7.3 that there exist 
only one real interaction between parameters, and this is 
between D »integration time« and G »point density«, so 
parameter D should be changed very carefully, because 
it can happen that when it improves response of std.dev., 
it can at the same time make worser point number 
prediction, indirectly changing parameter G. Special 
attention should be paid to the parameters C and D, 
because they reveal in both ANOVA reports as 
significant. This means when changing parameters C or 
D at one response prediction, it may  unintentionally also 
affect the other response factor prediction.  
 
Table 5. Statistical estimates of selected design model 

 
Table 5. indicates a few other estimates of selected 
model. The "Pred R-Squared" of 0.9560 is in reasonable 
agreement with the "Adj R-Squared" of 0.9645. "Adeq 
Precision" measures the signal to noise ratio.  A ratio 
greater than 4 is desirable. Ratio of 42.029 indicates an 
adequate signal.  It means that this model can be used to 
navigate the design space. 
Now final equations in terms of coded factors for 
prediction of both responses can be written: 
 
std.dev  =   +0.048 + .012* A  + 1.980E-003 * B - 
1.090E-003 * C + 5.384E-003* D + 1.751E-003* E - 
4.790E-004 * F + 2.056E-004* G[1] - 6.925E-004* G[2] 
and   
npoints = +1.246E+005 - 14380.73 *A + 11353.66 *B - 
74875.31*C - 29025.62*D + 2232.03*E - 3900.72*F + 
72057.26*G[1] - 12448.89*G[2]  
 
Data members were checked and  proved according to 
the normal plot of residuals to represent normal 
probability distribution. It was also proved by Box-Cox 
plot that there is no need to make any power 
transformation of designed model. The variance inflation 
factor (VIF) was also checked in order to find out how 
much the variance of the model is inflated by the lack of 
orthogonality in the design, according to the both limits 
of  95% confidence intervals.  
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If the factor is orthogonal to all the other factors in the 
model, the VIF should be as close to value of 1.00 as 
possible. But it should not exceed the value of 10.00. In 
our case this condition is fulfilled, since the VIF for A, 

B, C, D and F is between 1.00 and 1.05 which is 
excellent. 
 
 
 

 
8 Model optimization  
 
8.1 Standard Error Plot 
Models obtained with D-Optimal DOE as shown in 
previous chapters, will now be optimized by some most 
significant parameters. The plot of standard error of the 
mean shows how the error in the predicted response 
varies over the design space. StdErr% is a different 
representation of the standard deviation and it shows the 
accuracy at which the optimized predictions will happen. 
It is simply the result of the following (stddev / mean * 
100). Typically, if the StdErr% exceeds 30 or 40%, then 
this could be a sign for a high amount of deviation 
within that particular group of values, and usually one or 
more of the values is anaomalous to a large degree. In 
our case the maximum exceed is about 18%, which is 
acceptable. [17] 
The shape of the standard error plot is set by design 
points and the actual values are set by how well the 
model fits the response of accurate source model. For 
our design space this plot is shown in Fig. 4. StdErr is 
analysed for first (Std.dev.), and second (n.points) 
response factor according to the two most significant 
parameters, »line width« and »integration time«. 
Contours of constant standard error are displayed on the 
two-dimensional surface.  
 
 

a) 

    
b)             

Fig. 4.: The response surface plot of standard error for 
both response factors 
 
Lines on  2D surfaces denote constant height of StdErr 
values, and dark surfaces show design space, where the 
standard error is minimized, and this is the space where 
the best accuracy of reversed point model is expected. So 
before performing particular scan process it is very 
useful to checkif the setted input parameter design points 
fall inside dark shaded range. If the answer is 
affirmative, then high accuracy of reversed point model 
could be expected, otherwise not. 
 
 
8.2 Analysis of response surface for both 

predictive parameters, (point number and 
std. deviation) 

Two most significant input parameters (laser beam width 
(x1) and integration time (x2) ), when taken at optimal 
run conditions are presented in function Y of two levels: 
Y = f(x1, x2)+  ε (5) 
 
where ε represents the noise or error observed in the 
response Y, which is Std.dev. and number of points. If 
the expected response is denoted by E(y) = f(x1, x2) = η, 
then surface represented by 
  
η = f(x1,x2) (6) 
 
is called a response surface. As suggested by ANOVA, 
the most appropriate model for this design would be 
approximation of first-order model function [10] 
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y = βo + β1x1 +β2x2 +…….+βkxk + ε (7) 
 
 
 

a) 

 b) 
 
Fig. 5.  Response surface plot of both response factors 
for 3D reversed models 
 
Black shaded region in figure 5a. is  design area where 
optimal solutions (but not necessary also the minimum 
design error of process solutions) should be found  
Because number of predicted points is not a physical 
parameter, it is not possible to detect optimum area as is 
in case of  minimum, maximum, or saddle example etc. 
So number of points can be optimized according to the 
standard error plot in Figure 4, which  indicates a region 
where deviation of std.err is minimized. 
 
 
  
 

9 Performance assessment of 
developed models 

Predictions of developed model were tested at an 
optimal parameter setings, which were taken from 
portion of optimal design space.  In this way also the 
accuracy of reversed 3D model is checked against 
original 3D models. Then it is possible to perform 
confirmation runs to verify proposed predictions at 
optimal running conditions. It is also possible to go in 
oposite direction and make assesment of suitable input 
parameters on  a basis of known response factors 
std.dev. and number of points. [12,13] 
The 95% PI (prediction interval) will be used which is 
the range in which can be expected any individual value 
to fall into 95% of the time. The prediction interval will 
be larger (a wider spread) than the confidence interval 
since we can expect more scatter in individual values 
than in averages.  
 
Table 6:  Test set for modelling and  performance 
assessment 

 
 
In table 6. are collected measured and predictable data 
from eleven  reversed 3D models, according to different 
modelling approaches, as already mentioned at neural 
network testing.  
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Fig. 6.  Modelling performances of all approaches for  a) 
Std.dev. and  b) npoints responses 
 
The difference between the measured and simulated 
response factors is illustrated in Fig. 6.  The performance 
assessment has been measured with three different 
criteria, related to the test set in table 7. The first is the 
relative prediction error (RPE), shown in Fig. 7., which 

is defined as, = k̂ kRPE Y Y , where k̂Y  is the 

simulated/predicted output, and kY  is the corresponding 
measured output. A prediction is considered to be good 
if the RPEs are close to one. Second performance 
measure is the mean squared error of prediction (MSEP), 

defined as =
= −∑ 2

1

ˆ1/ ( )
m

k k
k

MSEP m Y Y
. [12]  The prime 

advantage of the MSEP lies in its ability to incorporate a 
measure of both the variance and square of the mean of 
the prediction errors. And the third is the mean absolute 
percentage deviation (MAPD), which is defined as 

=
= −∑

1

ˆ1/ ( )/
m

k k k
k

MAPD m Y Y Y
 and is also considered to 

compare the relative performance of the particular 
models [13,19]. The last two criteria results are shown in 
table 7. 
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Fig. 7.  Relative prediction error for std.dev. and point 
number responses 
 

 
Table 7.  Quantitative performance assessment. 
 
Looking at figure 7. and table 7., it is obvious that better 
results are achieved in a case of standard deviationt 
prediction than in case of point number prediction. 
Neural network predictive model gave better results in 
standard deviation prediction (8.34%). It is also 
noticeable that generally speaking neural network based 
D-test gave best results in both responses. The other 
useful aspect of presented design model is also that after 
establishing mathematical design model also “reversed” 
prediction of optimal input parameters on a basis of 
assessed output parameters is possible.  
 
 10 Conclusion 
 
The primary purpose of this study was to investigate the 
efficiency of different modelling approaches to simulate 
and understand importance of different laser scan 
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parameters, as well as their mutual interactions. The 
other purpose was to use developed models to evaluate 
best optimized crucial parameters, which have to be 
employed in a scanning process. On a basis of upper 
results and findings it is now possible to input desired 
range of std. dev. into derived model, and the model will 
answer with best – optimized input parameters, which 
have to be brought into the driving software for 
controlling the laser-scann device. Successful 
optimization also benefits in a rise of  reliability and 
accurateness. In our lab this scan model is already being 
successfully used for scanning with 3 axis milling 
machine. Some possible existing model uncertainties 
may be attributed to the lack of  some geometrical and 
topological properties (curvature, slope gradient etc.) of 
the scanning object. But this are assumptions, which 
should be cheked in future works.  In this directions the 
future investigations will be going on.   
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