
An Economic Model for Grid Scheduling

MASSIMILIANO CARAMIA
Universit̀a di Roma “Tor Vergata”

Dipartimento di Ingegneria dell’Impresa
Via del Politecnico, 1 - 00133 Roma

ITALY
caramia@disp.uniroma2.it

STEFANO GIORDANI
Universit̀a di Roma “Tor Vergata”

Dipartimento di Ingegneria dell’Impresa
Via del Politecnico, 1 - 00133 Roma

ITALY
giordani@disp.uniroma2.it

Abstract:Grid scheduling, that is, the allocation of distributed computational resources to user applications, is one
of the most challenging and complex task in Grid computing. In this paper, we give a quantitative description of a
tender/contract-net model. The performance of the proposed market-based approach is experimentally compared
with a simple round-robin allocation protocol.

Key–Words:Grid computing, Resource Management, Economic models, Scheduling, Simulation

1 Introduction

Grids are distributed computational systems that al-
low users to access resources owned by different orga-
nizations [3]. One of the most known framework for
Grid scheduling is the one introduced by Ranganathan
and Foster in [5]. In this architecture, users submit
requests for task execution from any one of a num-
ber of sites. At each site, besides the local computing
system, the system model is composed by three com-
ponents: anExternal Scheduler(ES) responsible for
determining a particular site where a submitted task
can be executed; aLocal Scheduler(LS), responsible
for determining the order in which tasks are executed
at that particular site; aDataset Scheduler(DS), re-
sponsible for determining if and when to replicate data
and/or delete local files. On receipt of a task request,
the ES interrogates the LSs to ascertain whether the
task can be executed on the available resources and
meet the user-specified due date. If this is the case,
a specific site in which executing that task is cho-
sen. Otherwise, the ES attempts to locate a LS of a
site, controlled by another ES, that can meet the task
processing requirements, through search mechanisms.
If a LS cannot be located within a preset number
of search steps, the task request is either rejected or
passed to a scheduler that can minimize the due date
failure depending on a task request parameter. When
a suitable site is located, the task request is passed
from the ES to this site and is managed by the associ-
ated LS. Within such a framework, most of the related
work in Grid computing dedicated to resource man-
agement and scheduling adopt a conventional style
where a scheduling component decides which jobs
are to be executed at which site based on certain cost

functions (e.g., AppLeS [6], NetSolve [2]). Such cost
functions are often driven by system-centric param-
eters that enhance system throughput and utilization
rather than improving the utility of task processing.

Another important class of models to manage
Grid computing environment is that of economic
models in which the scheduling decision is not done
statically by a single scheduling entity but directed by
the end users requirements. Whereas a conventional
cost model often deals with software and hardware
costs for running applications, the economic model
primarily charges the end user for resources that they
consume based on the value they derive from it. Pric-
ing based on the demand of users and the supply of
resources is the main driver in the competitive, eco-
nomic market model. Moreover, in economic mod-
els, differently from what happens for the external-
local scheduler architecture aforementioned, the two
main actors driving the Grid marketplace are: Grid
Service Providers (GSPs), representing the resource
owners (i.e., the producers), playing the same role
as the LSs in the Ranganathan and Forster frame-
work, and Grid Resource Brokers (GRBs), represent-
ing the users (i.e., the consumers) in the Grid mar-
ketplace, whose role is in part encompassed by the
ESs in the previous model. In a generic marketplace
model framework, consumers interact with their own
brokers for managing and scheduling their applica-
tions on the Grid. The interaction between GRBs and
GSPs during resource trading (service cost establish-
ment) is mediated through a Grid Market Directory
(GMD). They use various economic models or inter-
action protocols for deciding service access price arise
from the real world market, e.g., commodity market,
tender/contract-net [1, 4].

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 319

In this work we apply thetender/contract-net
modelwhich is one of the most widely used models
for service negotiation in a distributed problem solv-
ing environment. It is modelled on the contracting
mechanism used by businesses to govern the exchange
of goods and services. We give a quantitative descrip-
tion of this model, and experimentally evaluate its per-
formance comparing it with a round-robin allocation
protocol.

2 Actors and Behavior Patterns

A set of users (clients) submits task requests to the
Grid requiring a certain level of service (los). This
los can be represented by means of a due date pro-
vided by the user within which he/she desires to re-
trieve the output/response of its task request and/or by
an amount of money (budget) that the user is willing
to pay (at most) to have its tasks executed (possibly)
within the specified due date. Moreover, a task request
can be characterized by many parameters such as the
processing requirement or task size (i.e., the number
of million instructions (MI) needed for the computa-
tion), the task arrival (release) date, the type of task
(e.g., a program code, a simulation) that may restrict
the possible choices of the computing site (cluster)
able to process it. In what follows, let a user submitted
taskj be characterized by the following parameters:
rj , arrival date;Oj , size (i.e., the processing require-
ments), in MI;Bj , budget available for task execution,
in G$ (Grid $); dj , due date;wj , weight, in G$ per
time unit.

We assume that the task due date can be exceeded,
but this implies a certain loss of thelos. The amount
of this loss constitutes apenaltycost for the user, who
has submitted the task, which is assumed to be pro-
portional to the application tardiness or delay (i.e., the
positive difference between task completion time and
its due date). This cost is summed up with the com-
putational cost that the user has to pay to the owner
of the resources required for task execution, and the
specified budget is the maximum amount that the user
is willing to pay to cover both these two costs. The
amount of penalty cost per time unit is specified by
the weightwj of taskj.

Tasks are processed by machine clusters (servers)
and pre-emption is not possible, that is, a task cannot
migrate to another cluster once its execution is started.
Moreover, we assume that tasks are malleable, that is,
the number of resources of a cluster assigned to a task
may change during its execution, and a task can be
executed on several machines (of the same cluster) in
parallel and spread over an arbitrarily large fraction of
the available computational resources of a cluster.

The computational Grid responsible of task exe-
cution is composed by a number of computing sites
or machine clusters (servers), each one controlled by
a local scheduler. Let us consider a clusterm be-
ing characterized by the following parameters:Pm,
number of machines (i.e., PCs, workstations, proces-
sors) of the cluster;R∞

m,i, peak performance (compu-
tation capacity), in million instructions per time unit
(e.g., second) (MIPS), of thei-th machine of the clus-
ter; pi

m, computation price of machinei of clusterm,
in G$ per time unit. For simplicity, we assume that
the machines of clusterm are homogeneous; hence,
R∞

m,i = R∞

m . Moreover, we assume that the compu-
tational resource of each machine of a cluster can be
split and allocated to different tasks.

Task requests generated by the users are analyzed
by a set of external schedulers; we assume that each
external scheduler is associated with a subset of users,
and is responsible only for their task submissions. For
instance, we can assume that user requests are clus-
tered, based on their nature, into topics, leading to a
sort of thematic submissions, i.e., there are users that
are interested in economics, others that are interested
in sciences, and so on. In this context, each external
scheduler is employed to work for a particular kind
of task submissions. The role of an external sched-
uler is twofold: on the one hand, it acts in the Grid
on the behalf of the user looking at feasibility of the
los required; on the other hand, it has to interact with
the resource owners in the Grid to allow a matching
between tasks and resources for their execution.

This kind of mechanism requires also a sort of co-
operation between these two layers, i.e., the external
scheduler and the local schedulers. When a user re-
quest is submitted, it is routed to an external sched-
uler for evaluation. Together with the request, the
external scheduler receives from the user thelos de-
sired. Since the users is not aware of the status of
the Grid and thus he/she does not know if enough re-
sources are available to allow the immediate process-
ing of the task, it can happen that the desiredlos is
not obtainable. Thus, the external scheduler has to de-
cide whether to accept or not that task request and in
the former case guaranteeing the associatedlos. To do
so, it has to interact with the local schedulers control-
ling machine clusters where resources reside to take a
decision about the task request acceptance. With this
setting, the performance of the system can be eval-
uated in terms of both number of successfully pro-
cessed tasks, i.e., the number of tasks finished respect-
ing their due dates, violations of the due dates, and the
number of tasks rejected, i.e., those not accepted by
the external scheduler.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 320

3 Local scheduling policy

We assume that the computation cost that a user has
to pay to the computational resource owner for execut-
ing its task is driven by a sort of supply-and-demand
model. That is, the more a cluster is loaded and the
greater is the price per MI (million instruction) that
the a new user has to to pay for scheduling its task on
that cluster.

In order to represent the fact that the cluster price
per MI is an increasing function of the cluster utiliza-
tion, we assume that the machines of clusterm are in-
dexed in non-decreasing computation price order, and
we assume that the local scheduler of clusterm allo-
cates part of the computation capacity of machinei in
time period[t, t + dt) only if machinei− 1 is already
fully allocated (busy) in that period. Accordingly, we
model the computation price of machinei of cluster
m per time unit aspi

m = pmax
m − Pm−i

Pm−1(pmax
m − pmin

m),

with pmax
m andpmin

m being the maximum and minimum
price per time unit of a machine of clusterm, respec-
tively. For example, if at a given unit time period (the
first) k machines are fully allocated, the computation
cost for executing one additional MI of applicationa
in that unit time period is equal tock+1

m /R∞

m .
Note that according to the supply-and-demand

model, the use of a cluster when its load is high is
discouraged, while it is encouraged the opposite situa-
tion, aiming in this way to a certain load balancing. In
fact, we assume that the local scheduling policy aims
to minimizing the maximum peak of total cluster uti-
lization (load).

We assume that when an external scheduler ask
the local scheduler of clusterm to schedule on that
cluster a taskj, beside the task sizeOj , it also spec-
ifies a required completion timeCj for task j. The
local scheduler finds the best resource allocation to
taskj according to the request(Oj , Cj), trying to bal-
ance as much as possible the total cluster utilization
during the time interval when the task should be exe-
cuted. LetR

i
m(t) ≤ R∞

m be the amount of the compu-
tational resource of machinei of clusterm available in
time period[t, t + dt). The local scheduler of cluster
m computes the amount of computational resources
ρi

j,m(t) (with 0 < ρi
j,m(t) ≤ R

i
m(t)) of machinei to

be allocated toj, for each time period[t, t + dt) con-
tained in time window[sj , Cj) with sj ≥ rj , such that
∫ Cj

sj

∑Pm

i=1 ρi
j,m(t)dt = Oj , and the maximum total

load maxt∈[sj ,Cj)

{

∑Pm

i=1(R
∞

m − R
i
m(t) + ρi

j,m(t))
}

of clusterm in that time window is minimized.
The computation cost that the user should pay

to the resource owner for executing taskj on cluster
m with completion timeCj is thereforecj,m(Cj) =

∫ Cj

sj

∑Pm

i=1
pi

m

R∞

m
ρi

j,m(t) dt.

Note that if we suppose that the total amount
Rload

m (t) =
∑Pm

i=1(R
∞

m − R
i
m(t)) of allocated re-

sources (resource loading profile) of clusterm (be-
fore scheduling taskj) is a non-increasing function
in the time interval[rj , +∞), the optimal allocation
of required resources for the execution of all theOj

operations in the interval[sj , Cj) can be obtained by
guaranteeing that after schedulingj the total load of
m is constant in that interval.

Moreover, this (let us sayperfect) load balance
in time interval[sj , Cj) also guarantees that the total
amount of allocated resources is still non-increasing in
the interval[rj , +∞) after scheduling taskj. There-
fore, w.l.o.g., when a new taskj′ is submitted to the
Grid at timerj′ , we assume that the resource loading
profileRload

m (t) of clusterm is a non-increasing func-
tion for t ≥ rj′ .

4 Market-based resource manage-
ment: a tender/contract-net model

In this section we describe in detail the application of
an economic model, based on thetender/contract-net
protocol, for allocating Grid resources to user appli-
cations. A user/resource broker asking for a task to be
solved is called themanager, and a cluster that might
be able to execute the task is called the potentialcon-
tractor.

In the tender/contract-net protocol GRBs (man-
agers) announce their task requirements and invite
bids from GSPs (contractors). Interested GSPs eval-
uate the requirements and submit their bids. Each
GRB awards the contract to the most appropriate GSP
(maximizing its utility function). In details, the steps
performed when a new application is submitted to the
Grid are reported in Table 1. The tender model al-
lows directed contracts to be issued without negotia-
tion. The selected GSP responds with anacceptance
or refusalof award. In particular, Step 4 is done if the
award is accepted by the GSP, otherwise GRB awards
the contract to the second best GSP.

When selecting the GSP to which award the con-
tract, on the behalf of the user, the GRB maximizes
its utility function. The utility of GRB (i.e., the user
utility) for executing and complete taskj at time
Cj on clusterm is Uj,m(Cj) = Bj − cj,m(Cj) −
wj max(0, Cj − dj), where we recall thatBj is the
budget the user is willing to pay for executing task
j, whose cost is the computational (resource) cost
cj,m(Cj) plus the penalty costwj max(0, Cj −dj) for
the task tardiness, if task will be completed at time
Cj . In particular, the computational costcj,m(Cj) is

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 321

Step 1: The user submits taskj to a GRB.
Step 2.1: GRB announces resource requirements to GSPs

(through the GMD) forexecuting taskj of sizeOj in time
interval[rj , Cj), and invites offer bidsfrom GSPs.

Step 2.2: Interested GSPs evaluate the announcement, and respond
by submitting their bids to GMD.

Step 3.1: GRB evaluates the bids submitted by GSPs.
Step 3.2: GRB identifies the GSP responding with the best bid

(the one maximizing GRB utility) among all the offers.
Step 3.3: If the identified GSP guarantees to GRB a (maximum)

utility not less than zero taskj is accepted, and GRB
awards the contract to that GSP for executing the task;
otherwise, it is rejected.

Step 4: GRB uses the machine cluster of the selected GSP to
execute taskj, and proceed to the payment of the resource
fees to GSP.

Step 5: The user pays the GRB for executing its task.

Table 1: Steps performed at an user task submission

the bid of the GSP of clusterm, when answering to the
GRB request announcement represented by(Oj , Cj).

Recall that, w.l.o.g., we assume that the resource
loading profile (i.e., the total allocated resource)
Rload

m (t) =
∑Pm

i=1(R
∞

m − R
i
m(t)) of clusterm at time

t is a non-increasing function, fort ≥ rj . Also, re-
call that thePm machines of clusterm are indexed in
non-decreasing cost order, and that some resources of
machinei + 1 are allocated to some scheduled appli-
cations in time period[t, t + dt) only if machinei is
fully loaded in that time period.

Next, we show that, forCj ≥ rj , the utility func-
tion Uj,m(Cj) is piece-wise linear, and even if it is not
concave, in general, finding its maximum value can
be computed very quickly. This follows from the fact
that the resource costcj,m(Cj) is a piece-wise linear
and non-increasing function ofCj . In fact, since in
the expression ofUj,m(Cj) the budgetBj is constant
and the penalty costwj max(0, Cj − dj) is equal to
zero forCj < dj and linear forCa ≥ dj , we may
restrict the analysis of the resource costcj,m(Cj) for
Cj ≥ rj . As a consequence, the maximum value
of Uj,m(Cj) can be searched only amongCj val-
ues whereUj,m(Cj) changes its slope: that is, for
Cj = dj , and for the times when the slope of the re-
source costcj,m(Cj) changes.

W.l.o.g., we assumecj,m(Cj) = +∞ if there is
no sufficient amount of resources of clusterm for ex-
ecuting j in time interval [rj , Cj), and we say that
the completion timeCj is infeasible. Therefore, from
now we consider only feasible completion times forj.

Proposition 1 The resource costcj,m(t) is a non-
increasing function, for feasible completion timest ≥
rj .

Let τh
m (with τh

m ≥ rj) be theh-th time when the
loadRload

m (t) of clusterm changes (decreases). Note

that the number of such times is at most equal to the
number of tasks previously scheduled on clusterm,
which should be completed after timerj . Let us de-
note withTm the subset of feasible completion times
among timesτh

m. Eachτh
m ∈ Tm corresponds to the

maximum feasible completion time for taskj, whenj
is restricted to use only resources that are available at
time t < τh

m.
Let θi

j,m (with θi
j,m ≥ rj) be the minimum feasi-

ble completion time of taskj, whenj is restricted to
use only resources belonging to the first (cheapest)i
machines (i.e., machines1, . . . , i) among thePm ma-
chines of clusterm. Let us denote withΘj,m the set
of timesθi

j,m. Note thatθ1
j,m ≥ θ2

j,m ≥ . . . ≥ θPm

j,m.

Let Tj,m = (t1j,m, . . . , t
qj,m

j,m) be the non-
decreasing ordered list of feasible completion times
of taskj, with Tj,m = Θj,m ∪ Tm\{τh

m ∈ Tm : τh
m ≥

θ1
j,m}. In particular,t1j,m = θPm

j,m, andt
qj,m

j,m = θ1
j,m.

Proposition 2 The resource costcj,m(t) is a lin-
ear function oft, for t ∈ (tsj,m, ts+1

j,m), with s =
1, . . . , qj,m − 1.

Note that, by definition, taskj cannot be com-
pleted in a feasible way before timet1j,m, hence, we
assume thatcj,m(Cj) = +∞ for Cj < t1j,m; more-
over, according to Proposition 1, the resource cost val-
uescj,m(tsj,m) does not increase for increasing index
s, andcj,m(Cj) is constant forCj ≥ t

qj,m

j,m since in this
case taskj will use only resources of machine1 of
clusterm. Moreover, Proposition 2 states that in any
time interval(tsj,m, ts+1

j,m), with s = 1, . . . , qj,m − 1,
the resource costcj,m(t) varies linearly. Hence, this
proves that

Theorem 3 The resource costcj,m(Cj) is a non-
increasing piece-wise linear function, for feasi-
ble completion timesCj ≥ rj , and Tj,m =

{t1j,m, . . . , t
qj,m

j,m } is the set of times wherecj,m(Cj)
changes the slope.

According to the definition of the utility function
Uj,m(Cj), and since the resource costcj,m(Cj) is non-
increasing, we have thatUj,m(Cj) is a non-decreasing
function in the interval[rj , dj). Therefore, there is
no utility for the GRB to demand computational re-
sources allowing taskj to be completed before its due
datedj . Hence, w.l.o.g., in order to find the maximum
value of the utility functionUj,m(Cj), we may restrict
the analysis ofUj,m(Cj) for feasible completion times
Cj ≥ dj . By Theorem 3,Uj,m(Cj) is also piece-
wise linear, and the maximum valueU∗

j,m is therefore
reached forC∗

j ∈ {dj} ∪ {tsj,m ∈ Tj,m : tsj,m > dj}.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 322

SinceTj,m = (Θj,m ∪ Tm\{τh
m ∈ Tm : τh

m ≥
θ1
j,m}), the optimal completion timeC∗

j can be de-
termined in linear time with respect to the number of
machinesPm plus the number of times inTm, that
is, the number of tasks currently in execution on clus-
ter m at timerj . In particular, by definition,Tj,m is
the union of a subset of the timesτh

m when the re-
source loading profileRload

m (t) of clusterm changes,
and the setΘj,m of Pm times. Therefore, assuming
that at the (current) timerj when taskj is submitted,
the information about the resources of clusterm (i.e.,
the numberPm of machines ofm, and their peak per-
formanceR∞

m) is supplied by GSP of that cluster and
stored in the GMD, and also the resource loading pro-
file Rload

m (t) of m (i.e., the setTm of timesτh
m when

Rload
m (t) changes, along with the values ofRload

m (τh
m))

is known and supplied to the GMD, there is no need
in Step 2.1 for the GRB to make an announcement
(Oj , Cj) to the GPS of clusterm, for everyCj ≥ rj ,
but only forCj ∈ Tm. Note that the setTj,m can be
easily determined by GRB by interrogating the GMD
where the information about the current status of the
Grid resources is available: the GRB interrogates the
GMD to obtain the setTm of times when the resource
loading profile data of clusterm changes, and to de-
termine the setΘj,m of timesθi

j,m on the basis of the
task sizeOj , the cluster resources, and the resource
loading profileRload

m (t) of m stored in the GMD.

5 A simulation study

We experimentally evaluate the performance of the
proposed economic model comparing it with the
round-robin protocol. We consider two different sce-
narios for the Grid system: Scenario 1, that considers
the case where tasks are mono-thematic applications
and their requests are submitted to the same External
Scheduler (GRB) that interacts with the Local Sched-
ulers (GSPs) of clusters dedicated to that kind of ap-
plications. The second scenario, i.e., Scenario 2, con-
siders enterogenous tasks and there are as many GRBs
as many tasks. While in Scenario 1 there is a sin-
gle GRB that interacts with the GSPs considering one
task at a time according to a given task ordering (e.g.,
FIFO), in Scenario 2 there are many GRBs interacting
at the same time with the GSPs. Therefore, in the lat-
ter scenario the GSP of a cluster may receive awards
from many GRBs, and it will respond with anaccep-
tanceonly to the award related to the most useful an-
nouncement for the cluster, and with arefusal to the
other awards. In both the above described scenarios
we use the following data set for the Grid simulation.

We consider a Grid system constituted by 10 clus-
ters. Each cluster has 10 machines or resource units

(processors), with the same speed equal to 400 MIPS
(million instructions per second). For all the clusters,
the minimum and maximum price of a machine per
time unit (i.e. second) is 6 and 8 G$ (Grid $) per
time unit, respectively. Tasks arrive according to a
Poisson arrival process whereλ is the average arrival
rate (i.e., number of tasks per time unit). On average,
45% of the arriving tasks arebackgroundtasks, that
is, tasks generated inside the clusters by the resource
owners, and 55% are external tasks generated by the
Grid users. Background tasks of a cluster have prior-
ity over external tasks submitted to that cluster, and
they are scheduled immediately on the available re-
sources of the cluster in order to be finished as earliest
as possible. The sizeOi of a task is equal to 10000
MI (million instructions) plus a uniformly generated
number between± 10% of 10000 MI. The due-date
di of a task is equal tori + run time + wait time
plus a uniformly generated number between± 10%
of (run time + wait time), whereri is the task ar-
rival date,run time = 5 time units is the expected
task run time supposing that half of the computational
resources of a cluster is allocated to the task, and
wait time is the allowed task waiting time. The bud-
get Bi of a task is equal to 250 G$ (Grid $) plus a
uniformly generated amount between± 10% of 250
G$. Finally, the penalty cost (task weight)wi for
each time unit exceeding the task due date is equal
to Bi/(di − ri − run time). The length of each
simulation is 100 time units. During the first and
last 10 time units no measurements are made to en-
sure the evaluation of the system at its steady state.
We have experimented with different values ofλ and
wait time parameters. In the following we report re-
sults with λ = 1, 2, . . . , 10, and with a fixed value
for wait time = 5 time units. Accordingly, the av-
erage number of tasks generated in each simulation
is 100, 200, . . . , 1000 tasks, respectively. The simu-
lator was coded in the C language and the time re-
quired to finish a simulation run is not greater that 1
second on a Pentium IV PC. Figure 1(a) shows the av-
erage cluster load (in percentage) due to background
tasks, the total load with the economic model (ECO)
both for Scenario 1 (ECO1) and Scenario 2 (ECO2),
and with the Round-Robin (RR) protocol. For low
congested cases (λ ≤ 3), we have no significant dif-
ference between the results of ECO (in both the two
simulated scenarios) and of RR, and the total average
load reach70% with λ = 3. For medium/high con-
gested cases, and in particular withλ ≥ 4, the overall
load is greater than70% in all the cases; nevertheless,
while with RR it is always less than90%, with ECO
it riches95.5% for λ = 7 (both in ECO1 and ECO2),
with an improvement of more than19% with respect
to RR. For greater arrival rates (i.e.,λ ≥ 8) the dif-

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 323

1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

λ

%

RR
ECO1
ECO2
bkg_load

(a)
1 2 3 4 5 6 7 8 9 10

0

10

20

30

40

50

60

70

80

90

100

λ

%

RR
ECO1
ECO2

(b)

1 2 3 4 5 6 7 8 9 10
125

130

135

140

λ

G
$

RR
ECO1
ECO2

(c)
1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

λ

G
$

RR
ECO1
ECO2

(d)

Figure 1: Computational results.

ference between the cluster load with ECO and with
RR decreases. Nevertheless, forλ ≥ 8 the Grid sys-
tem becomes very high congested and more than80%
of the incoming tasks has been rejected as shown in
Figure 1(b) where the ratio (in percentage) between
the number of rejected tasks and the number of sub-
mitted tasks are plotted for different values ofλ. In
particular, Figure 1(b) shows that even for low con-
gested cases (i.e.,λ ≤ 4) a significant amount of sub-
mitted tasks has been rejected by the Grid with RR
(more than32.4% with λ = 4), in opposition to a very
small fraction (6.7%) with ECO. In medium/high con-
gested case (e.g.,λ = 7), RR rejects more than88.5%
tasks while with ECO the fraction of rejected tasks is
non more than66.3%. Also for very high congested
cases (λ ≥ 8) there is a significant gap between the
fraction of rejected tasks with RR protocol and ECO
model. Finally, there is a negligible difference in the
performance of ECO comparing Scenarios 1 (ECO1)
and 2 (ECO2), that shows a high level of robustness
of the economic model. Figure 1(c) shows the trend
of the average computational cost per scheduled task
(among the scheduled tasks), as a function of task ar-
rival rateλ. With RR protocol the task computational
cost is almost independent fromλ and on average
equal to 137 G$; this is due to the logic of RR pro-
tocol where all the available resources of the selected
cluster is assigned to the submitted task in order to
finish it as earliest as possible. With ECO the average
task computational cost increases withλ from 126 G$
(with λ = 1) to 138 G$ (withλ = 10, and Scenario 2
(ECO2)), and it is always less than the value obtained
with RR. In particular, there is a non-negligible dif-
ference between the two experimented scenarios (see
ECO1 and ECO2 curves) forλ ≥ 5, with a greater

computational cost in Scenario 2, where many GRBs
interacts with each GSP, and hence each GSP accept
the most profitable award for the GSP itself, result-
ing in a greater average profit for the resource own-
ers than that of Scenario 1. Figure 1(d) shows the
average utility of submitted task as a function ofλ.
Both scheduled and rejected tasks are considered in
this evaluation, with the utility of rejected tasks fixed
to zero, and the utility of scheduled tasks equal to the
difference between the task budget (fixed to 250 G$
per task) and the task execution cost (computational
cost plus penalty cost). The figure shows that task util-
ity decreases withλ, but with ECO the average task
utility is always greater than that with RR protocol in
both the two evaluated scenarios. In particular there
is a significant gap among task utilities obtained with
ECO and RR in the medium/high congested case (i.e.,
λ between 3 and 5). Finally, we note that the average
tardiness is very small (less than 1.5 time units).

References:

[1] R. Buyya, D. Abramson, J. Giddy and H.
Stockinger, Economic Models for Resource
Management and Scheduling in Grid Comput-
ing, Concurrency Computat.: Pract. Exper. 14
(2002) 1507–1542.

[2] H. Casanova and J. Dongarra, NetSolve: A
Network Server for Solving Computational Sci-
ence Problems, International Journal of Super-
computing Applications and High Performance
Computing 11 (1997) 212–223.

[3] I. Foster and C. Kesselman, The Grid: blueprint
for a new computing infrastructure (2nd edition),
Morgan Kaufmann, 2004.

[4] N. Nisan, S. London, O. Regev and N. Camiel,
Globally distributed computation over the In-
ternet - the POPCORN project, Proceedings of
the 18th International Conference on Distributed
Computing Systems (ICDCS 1998), Amster-
dam, The Netherlands, May 1998. IEEE Com-
puter Society, 1998.

[5] K. Ranganathan and I. Foster, Decoupling com-
putation and data scheduling in distributed data-
intensive applications, Proceedings of the 11th
IEEE International Symposium on High Perfor-
mance Distributed Computing (HPDC-11), Ed-
inburgh, Scotland, July 23-26, IEEE Computer
Society (2002) 352–358.

[6] A. Su, F. Berman, R. Wolski and M.M. Strout,
Using AppLeS to schedule simple SARA on
the computational Grid, International Journal of
High Performance Computing Application 13
(1999) 253–262.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 324

