
Simulation of Quantum Gates on a Novel GPU Architecture

ELADIO GUTIERREZ, SERGIO ROMERO, MARIA A. TRENAS, EMILIO L. ZAPATA

University of Malaga

Department of Computer Architecture

29071 Malaga, SPAIN

{eladio, sromero, maria, ezapata}@ac.uma.es

Abstract: Quantum computers aim to achieve a huge reduction of the time required for solving problems with an

exponential complexity, but their simulation in conventional computers results itself on a problem with a similar

complexity. As this limits considerably the dimensions of the quantum computer we can simulate, multiprocessor

architectures are an almost obliged tool when tackling with such simulations. In this paper we explore the applica-

tion of the new graphical processor architectures in the simulation of the elementary operators that constitute the

basic building blocks of quantum computers. Recently, these GPUs are being used as general purpose multipro-

cessors, as they demonstrate to possess a floating point computing power larger than classic CPUs. In particular

our implementation makes use of the new CUDA software/hardware architecture developed recently by NVIDIA.

Key–Words: Quantum computing simulation, Graphics Processing Unit (GPU), parallel processing

1 Introduction

Unlike the conventional (classical) computation, the

so denominated quantum computers are devices that

process information on the basis of the laws of the

quantum physics and that would be able to solve some

problems of non-polynomial complexity in a much

smaller time [10]. Most of the power of quantum com-

puters is due to the quantum parallelism that allows

to perform simultaneous operations on an exponential

set of superimposed data. This is why the simulation

of this kind of computers requires an exponential ef-

fort. Parallelism is a suitable tool in order to mitigate

such computational requirements [7, 11], and will al-

low the emulation of quantum computers of a greater

dimension in a reasonable time.

Although the number of known algorithms that

are really effective [8, 13, 5] is actually reduced, and

there are no physical implementations of operative di-

mensions, the analysis of this model of computation

constitutes, at the moment, a topic of great interest for

physicists, computer scientists and engineers. In this

context, different simulators has been developed, both

in software [3, 7, 11, 12] as in hardware [6, 9, 14].

This work follows the model shown in Fig. 1 [7]

where the quantum computer acts like an accelerat-

ing hardware of the classical processor, which sends

the orders required to solve a concrete problem. Ac-

cording to the laws that govern it, it is not possible to

know the state of this quantum computer. Therefore,

the output of the quantum algorithm will be obtained

by a measurement process with certain probability.

This paper presents a parallel simulation of the

basic operators on whom an ideal quantum computer

is constructed. New emergent architectures, such as

general purpose graphical processors (GP-GPU) [2]

are put to use. The interface adopted between the host

and the platform on which the quantum computer is

simulated is the one defined by libquantum [3]. It is

one of the more popular simulation softwares, as well

as a part of the well-known benchmark SPEC2006.

2 Quantum computing

The ideal quantum computer to be simulated follows

the model presented in [4], consisting on the succes-

sive application of a network of quantum gates to a

quantum register with a classical initial state. A mea-

sure of the final state provides the output towards the

classical world.

A quantum bit (qubit) can be imagined as the lin-

ear superposition of two homologous classical states

we will note as |0〉, |1〉, in Dirac notation. The state

of a qubit can be represented using a complex two-

dimensional vector, where the basis for these two

states are |0〉 and |1〉. Thus, the state of a qubit can

be written as Ψ = α0|0〉 + α1|1〉, where the coeffi-

cients, or amplitudes, verify |α0|
2 + |α1|

2 = 1. |α0|
2

and |α1|
2 are interpreted as the probability of measur-

ing |0〉 or |1〉, respectively. In vector notation, we can

write Ψ =
(

α1

α0

)

, |0〉 =
(

0

1

)

and |1〉 =
(

1

0

)

.

A quantum register generalizes the qubit defini-

tion. The state of a n-qubit quantum register is deter-

mined by the linear superposition of the 2n possible

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      121



classical initial state

(quantum operators)

commands

(measurement)

results

ACCELERATOR

CLASSICAL COMPUTER

QUANTUM 

COMPUTER

classical initial state

(quantum operators)

commands

(measurement)

results

QUANTUM 

SIMULATOR

(GPU)

COMPUTER

CLASSICAL COMPUTER

libquantum−like
interface

Figure 1: Quantum computer model as a hardware accelerator and its simulation.

classical states provided by n bits. After this, the state

of a quantum register can be written as

Ψ =
2

n−1
∑

i=0

αi|i〉 with αi ∈ C,
2

n−1
∑

i=0

|αi|
2 = 1,

since |αi|
2 is interpreted as the probability of obtain-

ing |i〉 when the register is measured in such state.

Let Ψ be an element of a 2n-dimensional com-

plex vector space, where |i〉 constitutes a basis, with

0 ≤ i ≤ 2n−1. For example, for the value n = 3, we

will write |5〉 = |101〉 = (0 0 0 0 0 1 0 0 )T . After

applying the Kronecker’s tensor product, it is possible

to represent the elements of the state space basis for

the registry as a function of the individual states of the

qubits. For example |3〉 = |011〉 = |0〉 ⊗ |1〉 ⊗ |1〉.
Generally, this factorization is not always possible for

any state Ψ of the quantum register.

The state of a quantum register will evolve ac-

cording to a transformation, which can be interpreted

as an operator U applied to the register state. Quan-

tum physics laws settle that operator U must be a

linear and unitary one. It follows that for a n-qubit

register, an order 2n × 2n matrix can be found veri-

fying UU∗ = I , where U∗ is matrix U both conju-

gated and transposed, and I is the unitary matrix. As

a consequence, every valid transformation must be a

reversible one. Usually, this kind of transformations

are represented in the manner of Fig. 2(a).

As a particular instance, let us consider the appli-

cation of a transformation over one particular bit, as

shown in Fig. 2(b). In this case, the global transforma-

tion will be the tensor product of all the 1-qubit trans-

formations simultaneously applied to each individual

qubit. This means that the global resulting transfor-

mation Ug will be equivalent to the application of the

identity transformation to the residuary bits. If the 1-

qubit operator U is applied to the i−th qubit then:

Ug = I ⊗ I ⊗n−i−1 times)
... ⊗U ⊗ I ⊗i times)

... ⊗I =

= I⊗n−i−1 ⊗ U ⊗ I⊗i (1)

The transformation applied to one single qubit

can be interpreted like a unitary quantum gate of

1-qubit transformations

Identity I = |0〉〈0| + |1〉〈1|
Pauli X X = |0〉〈1| + |1〉〈0|
Pauli Y Y = j|1〉〈0| − j|0〉〈1|
Pauli Z Z = |0〉〈0| − |1〉〈1|

Hadamard H = 1
√

2
(X + Z)

y-axis rotation Ry(θ) = cos( θ
2
)I + sin( θ

2
)Y

z-axis rotation Rz(α) = ejα/2|0〉〈0| + e−jα/2|1〉〈1|

Phase shift Φ(δ) = ejδ|0〉〈0| + ejδ|1〉〈1|

2-qubit transformation

Controled NOT CNOT=|0〉〈0|+|1〉〈1|+|2〉〈3|+|3〉〈2|

Table 1: Some well-known quantum gates.

order 2 × 2. Table 1 presents several well-known

transformation. As an example, Pauli transformation

X = |0〉〈1| + |1〉〈0|, does project component |0〉 over

the |1〉 one, and vice versa, following that its quantum

application to a classic state 0 or 1 is equivalent to the

logic operator NOT.

The generalization to gates with more than one

qubit is straightforward, resulting in an associated ma-

trix of order 2n × 2n, for n qubits. Notice that the

number of qubits at the gate’s output must be equal to

the one at its input, as it is a reversible transformation.

This does not occur with conventional logic gates.

A quantum computer can be thought to be a quan-

tum device on which a sequence (or network) of trans-

formations can be applied successively to the state of

a quantum register [4]. Thus, transformations succes-

sively applied to subsets of bits can be interpreted as

a factorization of the global transformation that is ten-

sorial as refers to the bits, and conventional as refers

to its successive applications.

Different minimal sets of gates have been pro-

posed looking for their universality, that is, any n-

qubit transformation should be able of being ex-

pressed as a tensor product of the chosen gates. It is

not possible to find an universal minimal set consist-

ing only on 1-qubit gates. [1] states that a complete

set is built from gates Φ(δ), Rz(α), Ry(θ) (1 qubit)

and CNOT (2 qubits).

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      122



(a)

U..
..

..
..

..
..

..
..

input

state

output
state

q0

q1

q2

qi

qn

(b)

qi U

..
..

..
..

q0

q1

q2

qn

..
..

..
..

output
state

input

state (c)

qi

q2

qn

..
..

..
..

output
state

input

state

U

..
..

..
..

q0

q1

I

I

I

I

Figure 2: Operating on a n-qubit register.

3 The GPU programming model

A GPU (Graphic Processor Unit) is a device special-

ized in algorithms such as graphics rendering involv-

ing very intensive and highly parallel computations.

These devices are nowadays implemented as a set

of multiprocessors with a Single Instruction Multiple

Data (SIMD) architecture. Due to their high compu-

tational power, these GPUs are used both for graphics

and general purpose processing. In this scope, they

operate as a coprocessor, or hardware accelerator, to

the main CPU, or host.

NVIDIAr has recently presented its Compute

Unified Device Architecture (CUDATM), as a both

hardware and software architecture for issuing and

managing computations on the GPU as a truly generic

data-parallel computing device with a very high level

of parallelism. An extension to the C programming

language is provided in order to develop source codes.

CUDA programming model is based on a hi-

erarchy of abstraction layers: grids, blocks, warps

and threads. All threads in a block behave as an

SIMD, whereas different blocks of a grid are sched-

uled among the set of multiprocessors by the API

runtime in a transparent way. Programmers spec-

ify the number and shape (1D, 2D or 3D) of some

of such levels, without the additional charge of cod-

ing strategies to balance the workload among the ac-

tual hardware configuration. However, some limita-

tions exist, among others: the maximum number of

threads in a block is 512, a block of threads is executed

in one multiprocessor (manufacturer recommends the

use of a large number of blocks), memory accesses

for all threads in a warp must be coalesced, and only

threads in a block can be synchronized at the device

side, while the synchronization of different blocks of

threads must be explicitly done by the host.

According to this model, an application running

on the host invokes a unique kernel code that will be

executed for each thread at the device side, but oper-

ating over different data sets.

4 Quantum computing simulation

Simulation of a quantum computer will consist on

determining the state of a n-qubit register, after the

application of a unitary linear transformation. This

means that we have to compute the register’s state vec-

tor |Ψout〉 =
∑

2
n−1

i=0
αout

i |i〉, from initial state |Ψin〉 =
∑

2
n−1

i=0
αin

i |i〉, that is, to determine coefficients αout
i

for the final state as a function of coefficients αin
i

for the initial state and the unitary matrix U defining

the transformation. In general, the application of this

unitary transformation will require computations with

a complexity order O(22n) as matrix U is of order

2n × 2n, since 2n is the dimension of the associated

vector space.

To decompose this transformation in a set of suc-

cessive transformations with a lower number of qubits

(stages), translates into a reduction of the number of

operations per stage. This idea can be illustrated by

means of the application of a 1-qubit quantum gate,

which performs the operation |Ψout〉 = Ug|Ψ
in〉. Ug

comes from the expression 1, as a function of the

1-qubit transformation U . If we consider the initial

state is a superposition of states Ψin =
∑

2
n−1

i=0
αin

i |i〉,
the effect of the transformation over the coefficients

αin
i can be determined.

Let us consider that the 1-qubit transforma-

tion U = u00|0〉〈0| + u01|0〉〈1| + u10|1〉〈0| +
u11|1〉〈1| is applied to the q-th qubit of a n-qubit

register. If the initial state is a classical one

Ψin = |i〉 = |bn−1bn−2...b1b0〉, that is, a element of

the space of states base, where bk represent the bits

on the binary expression of natural i. Transformation

U over the q-th bit bq will result on:

Ψout = |bn−1〉 ⊗ |bn−2〉 ⊗ ...U |bq〉 ⊗ ...|b1〉 ⊗ |b0〉 =

=

{

u00|bn−1...0...b1b0〉+u10|bn−1...1...b1b0〉 if bq = 0
u01|bn−1...0...b1b0〉+u11|bn−1...1...b1b0〉 if bq = 1

(2)

This leads to:

αout
i = αout

bn−1bn−2...bq ...b1b0
=

=

{

u00α
in
bn−1...0...b1b0

+u01α
in
bn−1...1...b1b0

if bq = 0

u10α
in
bn−1...0...b1b0

+u11α
in
bn−1...1...b1b0

if bq = 1

=

{

u00α
in
i +u01α

in
i⊕2q if bq = 0

u10α
in
i⊕2q +u11α

in
i if bq = 1

(3)

where ⊕ stands for the bitwise logical exclusive-or.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      123



This means we can compute the output coef-

ficients from the input ones. But this requires to

traverse each one of the coefficients, with a O(2n)
complexity. Actually, coefficients associated to both

bq = 0 and bq = 1 can be computed simultaneously.

This reduces the complexity of the simulation loop to

O(2n−1), making in each iteration an effort equivalent

to the matrix-vector product of order 2× 2 (computa-

tion in place).

A generalization of expression 3 to a p-qubit gate,

its simulation will imply a loop of O(2n−p) itera-

tions with an iteration load equivalent to the matrix-

vector product of order 2p × 2p. Therefore, when-

ever it is possible a tensorial factorization of a generic

n-qubits transformation in K stages of 1-qubit gates,

the complexity of the simulation would be reducing to

O(K2n−1) instead of O(22n).

5 Parallel implementation

This work focuses on the parallel simulation of a U⊗n

operator applied to a n qubits register, based on an

1-qubit elementary transformation U . As foremen-

tioned, our simulation model (Fig. 1) involves a clas-

sical computation (code running on the host), and a

quantum computation which is just simulated on the

GPU (kernel code running in parallel on the device).

When designing the kernel code some limitations

may be encountered. The first one arises from the de-

vice’s memory system organization. On the one hand,

the vector of coefficients describing the quantum state

of the registry is very big, and only the global mem-

ory is able to store the whole of it. Although shared

memory is much more fast (it is local to the blocks of

threads), it has a reduced size and it will not be able to

store but a reduced portion of the coefficients. Subsets

of coefficients are transferred from global to shared

memory (copy in) when they are frequently reused

and therefore a substantial increment of performance

is granted. Notice that results will have to be trans-

ferred back to the global memory (copy out). On the

other hand, an efficient transference among global and

shared memory is restricted to contiguous words. If

not so, memory accesses will be serialized, which af-

fects negatively on the efficiency of the parallel code.

Another important limitation comes from the syn-

chronization mechanism inherent to CUDA. It only

allows to synchronize threads belonging to the same

block, not providing synchronization between blocks.

Notice that, as the number of threads may be several

orders of magnitude bigger than the number of threads

per block, this is just a short range synchronism. Syn-

chronization of threads pertaining to different blocks

will be solved after returning the control to de host,

which gives rise to a significant overhead.

..........α α α α α α α α α α α α0 1 2 3 4 5 6 7 8 9 10 11

thread 2

thread 1

..........

thread 0

thread 3

thread 0 ..........
Block 0 Block 1

Figure 3: Each thread computes the 1-qubit transfor-

mation for a pair of coefficients; in this example the

qubit no. 2 is transformed with 8 threads per block.

Simulation of 1-qubit gate U The simulation of a

1-qubit gate U is derived from the parallel SIMD exe-

cution of Eq. 3, where a quantum transformation U is

applied to the q-th qubit of a n-qubit register. Accord-

ing to this expression observe that the computation of

a coefficient αout
i requires accessing to the coefficient

αin
i itself and the coefficient αin

i⊕2q . Even more, once

these two coefficients are accessed, also αout
i⊕2q can be

calculated.

Consequently, the CUDA kernel code must deter-

mine in parallel every pair of the form {αi, αi⊕2q}. In

total as there exists 2n−1 pairs, the same number of

threads will be required. Each thread is in charge of

computing the transformation U for each pair (Fig. 3).

As a given coefficient belongs to one and only one

pair, it is necessary only one read and one write op-

erations in global memory. Thus, when simulating a

gate separately, the use of shared memory will not im-

prove the performance because there is no reusing of

data transferred from global to shared memory.

Due to the disjointness of different pairs, the co-

efficients computed after a transformation can be di-

rectly overwritten (in-place computation). This way,

a higher number of qubits can be simulated. Note that

synchronization points become mandatory when con-

secutive 1-qubit gates are going to be simulated in or-

der to guarantee the correctness of the computation.

Simulation of a factorizable n-qubit gate Let

us consider the particular case of simulating a

multiple-qubit gate factorizable in terms of the Kro-

necker’s product of 1-qubit gates. Without loss of

generality the gate is applied to every qubits of the

register, and the same 1-qubit gate U is used. That is,

the transformation to be analyzed is U⊗n.

A first approach follows from the simulation of

the single qubit gate. It consists in applying the gate

U to one qubit after another resulting in n consecutive

stages. Due to the lack of inter-block synchronization

in the GPU side, synchronization in the host side are

necessary. This fact involves a different kernel invoca-

tion for each qubit, i.e., for each stage. This solution

entails two main disadvantages: the overhead in time

due to host synchronization and the inefficacy of not

being able to use the fast shared memory.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      124



(a)
L

S
B

 q
u

b
it

s

q7

input
state

output
state

copy−outcopy−in SynchThreads

q0

q1

q2

q3

q4

q5

q6

U

U

U

U

(b)

M
S

B
 q

u
b

it
s

q7

input
state

output
state

copy−outcopy−in

SynchThreads

q0

q1

q2

q3

q4

q5

q6 U

U

U

U

(c)

M
S

B
 q

u
b

it
s

state
output

copy−in

copy−out

copy−out

Synch. on host

SynchThreads

SynchThreads

q0

q1

q2

q3

q4

q5

q6

q7

input
state

copy−in

U

U

U

U

Figure 4: Shared memory allows to save synchronizations on host (a), but when applied to the MSB qubits (b) lack

of coalescing may cause serialization that can be mitigated reusing contiguous memory locations (c).

In contrast to this solution, a more efficient pro-

posal is introduced hereafter. The key idea consist

of copying-in a subset of coefficient from global to

shared memory, perform all possible computations

and then copying-out the results from shared to global

memory. These coefficients allocated in shared mem-

ory can be reused several times. This is, more accesses

to fast shared memory and less accesses to global

memory.

This proposal proceeds as depicted in Fig. 4(a).

After copying-in all P pairs of coefficients that fit in

the share memory of a block, all the threads in such a

block performs log2(P ) + 1 stages (1-qubit gates). A

synchronization barrier is required between two con-

secutive stages. Note that this synchronization can be

achieved at thread level for threads in the same block,

with an overload of only two clock cycles. Finally co-

efficients are copied-out to the global memory. In gen-

eral the size of the shared memory is not large enough

to allocate all coefficients of the state vector. So, for

a high number of qubits, the previous procedure must

be repeatedly invoked, processing at most log2(P )+1
qubits each time (Fig. 4(b)).

Nevertheless, excluding the log2(P ) + 1 lowest

significant qubits, the application of such a procedure

for subsequent qubits results in a loss of performance.

This fact is derived from the memory access pattern

generated when coefficients are accessed. The more

significant qubits, the higher memory address strides

are generated. As the device memory system is orga-

nized into interleaved banks, threads in a warp must

coalesce with memory accesses, i.e., they must access

to contiguous aligned memory addresses in order to

be efficient. Otherwise, the memory operations may

be actually serialized. Therefore, being M the num-

ber of consecutive coefficients that provide the maxi-

mum coalescing, the shared memory for a block may

allocate 2P/M groups of M coalesced coefficients.

The key feature is selecting the base address of every

group in such a way that its stride allows to compute

the log2(P/M) + 1 transformations for next qubits.

Getting coalescing involves a lower level of reuse of

coefficients stored in the shared memory because they

can not be chosen arbitrarily without a high mem-

ory bandwidth penalty. As shown in the example of

Fig. 4(c), where P = 4 and M = 2, memory access

coalescing means introducing extra synchronization

on host, which in turn involves copy-out and copy-in

operations.

6 Results

Following the strategies above discussed, a multiple-

qubit gate U⊗n has been simulated. In particular U⊗n

has been built from the 1-qubit Hadamard transfor-

mation (Table 1), giving rise to the so-called Walsh

gate [10].

Experiments have been conducted on a NVIDIA

GeForcer8800GTX GPU, which includes 16 multi-

processors of eight processors working at 1.35GHz

with a device memory of 768MB. In addition, each

multiprocessor has a 8KB parallel data cache (shared

memory). The latency for global memory is about 200

clock cycles, whereas the latency for the shared mem-

ory is only one cycle (conflict free accesses). Parallel

execution is limited to 512 threads per block, sched-

uled in warps of 32 threads.

Experimental results are summarized in Table 2,

where the execution time of three implementations are

shown for different number of qubits. Upper limit for

this parameter is 26 qubits, imposed by the memory

size of the device. Walsh gate simulated qubit by qubit

(that is, applying the 1-qubit Hadamard gate to every

qubit) is labelled as GPU Version I. Remember that

this approach requires synchronizing on host for every

1-qubit gate invocation. With GPU Version II we re-

fer to the second approach of the section 5 (Fig. 4(c))

with parameters P = 512, M = 32. This approach

benefits from the use the shared memory, reducing the

synchronization at the host side and keeping memory

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      125



Number of qubits 18 19 20 21 22 23 24 25 26

CPU (sequential) 31 78 156 328 688 1453 3031 6281 13062

GPU Version I 1.8 3.2 6.1 12.0 24.3 49.9 102 212 439

GPU Version II 1.1 2.0 4.1 8.8 18.1 37.1 76.2 158 342

Table 2: Simulation of the Walsh gate: execution time (msec) on the GPU and the CPU.

coalescing for warps of threads. For both versions, the

total number of threads was a half of the number of co-

efficients of the state vector. With the purpose of set-

ting a time reference, the simulations have been also

sequentially executed on a Intel Core 2 based platform

at 2.13GHz.

Three facts about these results can be highlighted.

First we can observe that a good scalability is ob-

tained for both parallel versions, having into account

that the complexity of simulation is O(n2n). Sec-

ondly, note that the GPU Version II exhibits a better

performance for all the range. So, whenever possible

(tensor-factorizable gates) this second version should

be chosen. Finally, comparing the GPU times with

those of CPU, a relatively high speed-up is achieved,

near 40 for the fastest execution.

7 Conclusions

This work presents simulation results for several basic

algorithms related to quantum computation. Particu-

larly, a tensor-factorizable multi-qubit gate has been

analyzed. As these algorithms involve a high compu-

tational complexity, a parallel implementation is se-

lected, and moreover, a brand new GPU platform is

chosen.

In order to take advantage of the architectural

characteristics of the target GPU platform, two alter-

natives are proposed. The main concerns are to dimin-

ish the number of required synchronization points be-

tween target and host, and to exploit the parallel data

cache of the target device.

Experimental results exhibit both a high scalabil-

ity with the size of the quantum register, as well as

a good speedup when compared with a conventional

monoprocessor platform.

References:

[1] A. Barenco, C.H. Bennett, R. Cleve, D.P. Di-

Vicenzo, N. Margolus, P. Shor, T. Sleator, J.A.

Smolin, and H. Weinfurter. Elementary gates

for quantum computation Phys. Rev. A, 52(5):

3457-3467, Nov. 1995.

[2] NVIDIA CUDA Homepage. Available at:

http://developer.nvidia.com/object/cuda.html

[3] B. Butscher, H. Weimer. The libquantum library.

Available at: http://www.enyo.de/libquantum/

[4] D. Deutsch. Quantum Computational Net-

works. Proceedings of Royal Society of London,

A425:73-90, 1989.

[5] D. Deutsch and R. Jozsa. Rapid Solution of

Problems by Quantum Computation. Proceed-

ings of Royal Society of London, A: 439-553,

1992.

[6] M. Fujishima. FPGA-Based High-Speed Emu-

lator of Quantum Computing IEEE Int’l Confer-

ence on Computer Design, 2004.

[7] I. Glendinning and B. Ömer. Parallelization of

the QC-lib Quantum Computer Simulator Li-

brary. Lectures Notes in Computer Science,

3019: 461-468, 2004.

[8] L.K. Grover. A Fast Quantum Mechanical Algo-

rithm For Database Search. Annual ACM Sym-

posium on the Theory of Computation, 212-219,

1996.

[9] A.U. Khalid, Z. Zilic, K. Radecka. FPGA Emu-

lation of Quantum Circuits. IEEE Int’l Confer-

ence on Field-Programming Technology, 2003.

[10] M.A. Nielsen and I.L Chuang. Quantum Com-

putation and Quantum Information. Cambridge

University Press, 2004.

[11] J. Niwa, K. Matsumoto and H. Imai. General-

Purpose Paralel Simulator for Quantum Com-

puting Phys. Rev. A, 66(6): 623171–6231711,

2002.

[12] K. De Raedt, K. Michielsen, H. De Raedt, B.

Trieu, G. Arnold, M. Richter, T. Lippert, H.

Watanabe and N. Ito. Massively Parallel Quan-

tum Computer Simulator. Computer Physics

Communications, 176:121–136, 2007.

[13] P.W. Shor. Algorithms for Quantum Computa-

tion: Discrete Logarithm adn Factoring. Proc.

35th Symposium on Foundations of Computer

Science, 124–134, 1995.

[14] M. Udrescu, L. Prodan and M. Vladutiu. Us-

ing HDLs for Describing Quantum Circuits: A

Framework for Efficient Quantum Algorithm

Simulation. Computing Frontiers Conference,

2004.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      126


