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Abstract: Clustering has become an increasingly important task in modern application domains such as electronic
commerce, multimedia, surveillance using sensor networks as well as many others. In many of these areas, th
data are originally collected at different sites and their transmission to a central site is almost impossible. This
requires to develop novel distributed clustering algorithms to handle the difficult problems posed from the dynamic
topology changes of the network, impracticality of global communications and global synchronization and the
frequent failure and recovery of resources. In this paper, we propose a biologically-inspired algorithm for clustering
distributed data in a peer-to-peer network with a small world topology. The method proposed is based on a local
flocking algorithm that uses a decentralized approach to discover clusters by a density-based approach and th
execution, among the peers, of an iterative self-labeling strategy to generate global labels with which identify the
clusters of all peers. We have measured the goodness of our flocking search strategy on performance in terms c
accuracy and scalability. Furthermore, we evaluated the impact of small world topology in terms of reduction of
iterations and messages exchanged to merge clusters.
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Clustering algorithms have been applied to a wide
range of problems, including exploratory data analy-
sis, data mining, image segmentation and information
retrieval. In all of these disciplines the common prob-
lem is that of grouping similar objects according to
their distance, connectivity, or their relative density in
space [5]. Traditional clustering methods hardly can
be applied in the case of distributed datasets. Today’s
large-scale data sets are usually logically and physi-
cally distributed, requiring a distributed approach to
mining and the development of approximate local al-
gorithms [2].

Recently, many data mining algorithms based on
biological models have been developed, like for in-
stance [6], in order to solve the clustering problem.

Introduction

deposits something in the environment this makes no
direct contribution to the task being undertaken but
it is used to influence the subsequent behavior that is
task related.

In this paper, we present P-SPARROW a multi-
agent distributed clustering algorithm implemented in
a small world P2P network which combines the sto-
chastic search of an adaptive flocking with a density-
based clustering method and an iterative self-labeling
strategy to generate global labels with which identify
the clusters of all peers.

P-SPARROW clusterizes data independently on
different peers by a decentralized algorithm based on
flocking hunting agents that execute in parallel a smart
exploratory strategy to discovéwcal models of the
clusters represented by data points in which the car-

These paradigms are characterized by the interaction dinality of the points of the neighborhood exceeds

of a large number of simple agents that sense and
change their environment locally. Ants’ colonies,
flocks of birds, termites, swarms of bees etc. are
agent-based insect models that exhibit a collective in-
telligent behaviorgwarm intelligencg[1] that may be
used to define new distributed clustering algorithms.
In these models, intelligent behavior frequently arises
through indirect communication between the agents
using the principle ostigmergy, taken from the in-
sect societies. According to this principle an agent

a fixed threshold. Little by little that representative
points are discovered they act as attractors for all the
others. The entire flock then moves towards these rep-
resentative points to explore neighboring regions that
probably contain other representative points. Agents
have different features (color and speed) to adapt their
behavior according to their performance. For exam-
ple, an agent poorly-performing speed-up in order to
leave an empty or uninteresting part of the data space
in order to find a more interesting area more quickly.
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As soon as the representative points are discovered points. The two parameters, Eps and MinPts, must be
they are sent to the neighboring nodes to complete the specified by the user and allow to control the density
clustering by a merge procedure. Clusters are merged of the cluster that must be retrieved. The algorithm

using a global relaxation process in which nodes ex-
change cluster labels with neighboring peers until a
fixed point (i.e. all nodes detect no change in the la-
bels) is reached.

P-SPARROW has a number of nice properties.
Its underlying topology exploits the potentialities of
small world networks that have a high clustering co-
efficient and a low characteristic path length and this
make the algorithm fault tolerant and permits a faster
convergence. It works in an incremental way and this
make it adapt to perforrapproximateclustering and
its use as amnytimealgorithm; it is completely de-

defines two different kinds of points in a clusteare
pointsandnon-core points

A core point is a point with at least MinPts num-
ber of points in an Eps-neighborhood of the point.
The non-core points in turn are eithesrder pointsf
they are not core points but they atensity-reachable
from another core point aroise pointsf they are not
core points and are not density-reachable from other
points. To find the clusters in a data set, DBSCAN
starts from an arbitrary point and retrieves all points
that are density-reachable from that point.

A point p is density reachable from a poigt if

centralized, as each peer acts independently from eachthe two points are connected by a chain of points such

other.
with its immediate neighbors and the communication
is asynchronous. Locality and asynchronism implies
that the algorithm is scalable to very large networks.
We have implemented P-SPARROW using Java
agents and the Jxta Protocol, for programming the
communication and the synchronization among the
P2P nodes. The remainder of this paper is orga-
nized as follows. Section 2 introduces P-SPARROW,

Furthermore, each peer communicates only that each point has a minimal number of data points,

including the next point in the chain, within a fixed
radius. If the point is a core point, then the procedure
yields a cluster. If the point is on the border, then DB-
SCAN goes on to the next point in the database and
the point is assigned to the noise. DBSCAN builds
clusters in sequence (thatis, one at atime), in the order
in which they are encountered during space traversal.
The retrieval of the density of a cluster is performed

presents the principles of the density-based algorithms by successive spatial queries. Such queries are sup-
and describes its architecture. Section 3 discusses theported efficiently by spatial access methods such as

obtained results and the impact of the small world
topology and Section 4 draws some conclusions.

2 P-SPARROW

In this section we present P-SPARROW a novel al-
gorithm built upon the work [4] which uses the con-
cepts of a flock of birds that move together in a
complex manner using simple local rules, to clus-

ter distributed homogeneous spatial data in P2P sys-

tems. Since P-SPARROW utilizes the principles of
the conventional density-based clustering algorithms,

the density-based method is described first, then the

P-SPARROW algorithm is explained and finally the
overall distributed architecture is illustrated.

2.1 Density-based clustering

Density-based clustering methods try to find clusters
on the basis of the density of points in regions. Dense

R*-trees.

2.2 The P-SPARROW clustering algorithm

As in DBSCAN, P-SPARROW finds cluster perform-
ing region-queries on core points but it replaces the
exhaustive search of the core points with a stochastic
multi-agent search that discovers in parallel the points.
P-SPARROW is constituted of two phases: a local
phase for theliscoveryof the core points on each peer
and amerge phase that concerns a global relaxation
process in which nodes exchange cluster labels with
nearest neighbors until a fixed point (i.e. all nodes de-
tect no change in the labels) is reached.

Data are homogeneous and partitioned among the
peers. Each peer implements the flocking algorithm,
described in figure 1, using a fixed number of agents
that initially occupy a randomly generated position in
the space. Each agent moves testing the neighbor-
hood of each object (data point) it visits in order to

regions that are reachable from each other are merged verify if the point can be identified as @re point

to formed clusters.
DBSCAN [3] is one the most popular density

Then, P-SPARROW uses a flocking algorithm with
an exploring behavior in which individual members

based methods and it is based on the idea that all the (agents) search some goals, whose positions are not
points of a data set can be regrouped into two classes: knowna priori, in parallel and signal the presence or

clustersand noise Clusters are defined as a set of
dense connected regions with a given radigisy and
containing at least a minimum numbeéviiPts) of

the lack of significant patterns into the data to other
flock members, by changing color.
The entire flock then modes towards the agents
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for i=1 ... Maxlterations
foreach agent (yellow, green)
if (not visited (currenpoint))
density = computdocal.density();
mycolor= coloragent(density);
endif
end foreach
foreachagent (yellow, green)
dir= computedir();
end foreach
foreach agent (all)
switch (mycolor){
caseyellow, green: move(dir, speed(mycolobyeak;
casewhite: stop ();generataew.agent()break;
casered: stop (); merge(); if (newed()) cloneagent();break; }
end foreach
if ((bagout.dimension() thresholdr(i%lterMigr==0)) sendbag();
if (bagin_full()) notify .changes();
end for

Figure 1: The pseudo-code of P-SPARROW executed
on every peetr.

(attractorg that have discovered interesting regions
to help them, avoiding the uninteresting areas that are
instead marked as obstacles. The color is assigned
to the agents by a function associated to the data an-
alyzed during the exploration, according to the DB-
SCAN density-based rules and with the same parame-
ters: MinPts, the minimum number of points to form

a cluster andEps the radius of the circle containing
these points. In practice, the agent computes the lo-
cal density (density) in a circular neighborhood (with
a radius determined by its limited sight, i.e. Eps) and
then it chooses the color in accordance to the simple
rules of figure 2.

density > MinPts = mycolor = red (speed = 0)

m < density < MinPts = mycolor = green (speed = 1)
0 < density < % = mycolor = yellow (speed = 2)
density = ( = mycolor = w hrtt (speed = 0)

Figure 2: The rules for computing color and speed.

Sored, reveals a high density of interesting pat-
terns in the datagreen a medium oneyellow, a low
one and white, indicates a total absence of patterns.
The color is used as a communication mechanism
among flock members to indicate them the roadmap
to follow.

The main idea behind our approach is to take ad-
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Figure 3: Computing the direction of a green agent.

vantage of the colored agent in order to explore more
accurately the most interesting regions (signaled by
the red agents) and avoid the ones without clusters
(signaled by the white agents). Red and white agents
stop moving in order to signal these regions to the
others, while green and yellow ones fly to find clus-
ters. Green agents will move more slowly than yellow
agents in order to explore more carefully zones with
a higher density of points. The variable speed intro-
duces an adaptive behavior in the algorithm. In fact,
agents adapt their movement and change their behav-
ior (speed) on the basis of their previous experience
represented from the red and white agents. Anyway,
each flying agent computes its heading by taking the
weighted average of alignment, separation and cohe-
sion (as illustrated in figure 3.

Green and yellow agents compute their move-
ment observing the positions of all the agents that are
at most at some fixed distancgigt ma¥ from them
and applying the rules of Reynolds’ [7] with the fol-
lowing modifications:alignmentandcohesiordo not
consider yellow agents, since they move in a not very
attractive zonegohesions the resultant of the head-
ing towards the average position of the green flock-
mates (centroid), of the attraction towards red agents,
and of the repulsion by white agentsseparationdis-
tance is maintained from all the agents, whatever their
color is.

New red agents executes the merge procedure;
i.e., a temporary label will be given to these agents
and to all the points of their neighborhood, if they are
not already labeled. Otherwise the minimum of all
the labels will be assigned to all the core points in this
neighborhood, in order to make them belong to the
same cluster. In this way, on each peer the set of red
agents (core points) determinates the local model of
clustering.

Neighboring peers must be informed about the
new core points or about the new labels in order to
merge all the points belonging to the same cluster. To
this end, red agents create clone agents and put them
in an apposite bag and, when a fixed number of clone
agents is achieved (i.e. a bag of agents has reached
the desired dimension) or a certain number of itera-
tions have been performed, each peer will send the
bag containing the cloned red agents to the neighbor-
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ing peers. Consequently, the agents received from the
other peers will be put in another bag that will be used
in the next iteration (or when it become full) for the
merge phase. In practice, the new agents continuously
update the labels as multiple clusters take shape con-
currently. This continues until nothing changes, by
which time all the clusters will have been labeled with
the minimum initial label of all the sites containing
the data. All the points having the same label form a
cluster.

2.3 The software architecture

The software architecture of P-SPARROW on one of
the nodes of the P2P network is described in figure 4.
On each node, th#ock platform manages the cel-
lular space in which the agents move. Furthermore,
it supplies the main procedures concerning the agents
(move, remote move, create new agent, clone agents,
etc..) using the underlying levels. Agents of differ-
ent colors will be scheduled by means of tngents

scheduler.
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Figure 4: The software architecture of P-SPARROW
on one of the nodes.

\

Theresource manager(RM) execute efficiently
range queries (i.e. compute density) in the dataset,
accessing the repository, in order to choose the new
color of the agents. The RM is also responsible of
putting new agents received by the neighboring peers
in the appropriate zone of the cellular space in order
to start a new phase of merge. The arrival of a new
bag of agents is signaled by thetifier manager that
supplies also information about new events such as
the fall of a peer, the convergence of the algorithm,
etc... Thenetwork manager handles the send and
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2.4 Using Small World topology

In a first implementation, peers were arranged using
a logical ring topology. However, using this topology
the merge phase can waste many iterations before to
merge all the clusters. This is due mainly to the char-
acteristics of the ring topology, i.e. we have a high
average hop count between two nodes. Furthermore,
the fall of a node (event not infrequent in p2p net-
works) causes a dramatic increase in the hop count.
On the other hand, if we used a completely connected
topology, the network will be congested by the large
number of messages exchanged.

An interesting alternative is using the small world
topology [8] to describe the phenomenon that every-
one in the world can be reached through a short chain
of social acquaintances. We can characterize network
topologies using two parameters: path len@RL
(i.e. the length of the shortest path between each pair
of nodes averaged over all possible pairs) and cluster-
ing coefficientCC (i.e. the ratio between the number
of edges in the neighborhood of a node and the to-
tal number of possible edges averaged over all nodes).
Small world topology, showed in figure 5 (b) have a
high CC butalow CPL and that is a really useful prop-
erty in p2p networks, as we need a few hops to reach a
node, but the disconnection of a node does not change
the behavior/performance of the system.

a) Regular

by Srmall World

c) Randam

Figure 5: (a) Regular Lattices(= 0) (b) Small World
(6 = 0.1) (c) Random = 0.8)

The topology of the network depends on the pa-
rameters, if it tends to zero we will have a regular
lattice topology, if it varies from 0.01 to 0.1 we will
have a small world topology and higher values will
bring to a random topology (figure 5 c). In subsection
3.2 we reported the improvements obtained using the
small world topology.

3 Experimental Results

In this section, we want to analyze the goodness of our
algorithm in the task of performing approximate clus-
tering and we want to verify some interesting prop-

the receive of the bags of agents on the basis of the erties of our distributed system (i.e. accuracy, scala-
topology of the system (see subsection 2.4 for more bility, etc..). In our experiments, we used a real spa-
details about the topology used), using JXTA sockets. tial dataset called Sequoia. Sequoia is a dataset com-
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Figure 6: Number of points for cluster for Sequoia
dataset (percentage in comparison to the total num-
ber of points for cluster) when P-SPARROW analyzes
1%, 2% 5% and 10% of total points, using 16, 32 and
80 peers.

posed by 62556 names of landmarks (and their co-
ordinates), and was extracted from the US Geologi-
cal Survey’s Geographic Name Information System.

The three main clusters in this dataset represent re-
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tain the same results as DBSCAN, as the merge phase
is the same. Then, in our experiments we consider
as 100% the cluster points found by DBSCAN (note
DBSCAN visit all the points). We want to verify how
we come close to this percentage visiting only a por-
tion of the entire dataset and that must be effective
for different number of peers involved in the compu-
tation. Note that the dominant operation in the compu-
tation is the execution of the range queries, performed
each time a point is visited, while the time of the other
operations is negligible. So, the fact of reducing the
percentage of visited points considerably reduces the
execution time.

For a large number of peers, the density of points
for cluster for peer necessarily decreases; so we have
to choose a different value of the parameter MinPts to
keep into account this aspect. In practice, we choose
a value of MinPts inversely proportional to the num-
ber of peers (i.e. if we fix MinPts as 8 on 16 peers,
we have to fix as 4 on 32 peers and so on). In figure
6, we show the experimental results concerning the
accuracy and scalability of the algorithm by varying
the number of peers for the Sequoia dataset. For in-
stance, on 80 peers, visiting only the 5% of points, on
average, we obtain an accuracy of 80% and visiting
the 10% of data we reach 93% of accuracy. Further-
more, the scalability (i.e. the effect on the accuracy
of increasing the number of peers and so reducing the
number of data points for peer) is quite good. In fact,
if look at the Sequoia dataset, for the 5% case, we ob-
tained a reduction from 88% for 16 peers to 81% for
80 peers while for the 10% case, we have a little re-
duction from 99% to 94%. Visiting only 1% of the
dataset we have low percentage of point found, how-
ever they are sufficient to have an approximate idea of
shape of the clusters.

For instance, on 80 peers, visiting only the 5%
of points, on average, we obtain an accuracy of about
80% for the Sequoia dataset. Furthermore, visiting the
10% of data we reach 93% of accuracy.

Moreover, the scalability (i.e. the effect on the ac-
curacy of increasing the number of peers and so reduc-
ing the number of data points for peer) is quite good
for the dataset. In fact, if look at the Sequoia dataset,

spectively the areas of S. Francisco, Sacramento and for the 5% case, we obtained a reduction from 88% for

Los Angeles.

3.1 Accuracy and Scalability

We run our algorithm using 100 agents working until

they explore the 1%, 2%, 5% and 10% of the entire
data set, using 16, 32 and 80 peers. All the exper-
iments were averaged over 30 trials. Our algorithm

16 peers to 81% for 80 peers while for the 10% case,
we have a little reduction from 99% to 94%. Visit-
ing only 1% of the dataset we have low percentage
of point found, however they are sufficient to have an
approximate idea of shape of the clusters.

3.2 The impact of Small World topology

uses the same parameters as DBSCAN. Therefore, if In order to test the effect of the small world topol-

we visited all the points of the dataset, we would ob-

ogy, we run P-Sparrow with the same parameters re-
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Figure 7: Avg number of messages exchanged for the
three different topologies (regular lattice, small world
and random) using 32 and 80 peers for Sequoia.

ported in the previous subsection using the three dif-
ferent topologies of figure 53(= 0, 3 = 0.1 and

8 0.8) with the real datset Sequoia. Note that
we used two configurations respectively of 32 and 80
peers, as 16 peers are not sufficient to generate a small
world topology.

In figures 7 (a) and (b), we reported the average
number of messages exchanged for peer (peers ex-
change core points each 100 generation) for the three
different topologies for the Sequoia dataset. Note that
when the number of messages approach to 0 means
that the algorithm does not discover new solutions
(core points) and then it converged. The SW topol-
ogy reach a higher peak in comparison with the reg-
ular (but less than the random), but then converges
more quickly, probably because of the effect of the
long-range links that accelerates the diffusion of the
core points and then the process of clustering. In the
case of the random topology, the low clustering coef-
ficient disperses many core points and this slow down
the convergence.

4 Conclusions

This paper describes P-SPARROW, a algorithm for
distributed clustering of data in peer-to-peer environ-
ments combining a smart exploratory strategy based
on a flock of birds with a density-based strategy to
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discover clusters of arbitrary shape and size in spa-
tial data. The algorithm has been implemented in a
peer-to-peer system and evaluated using a real word
dataset. Experimental results show that P-SPARROW
can be efficiently applied as a data reduction strat-
egy to perform approximate clustering. Moreover, the

algorithm scales well when the number of peer in-

creases. Finally, the use of a small world topology

helps the algorithm to merge clusters more quickly

with a slightly higher number of messages exchanged
and permits a better fault tolerance because of high
clustering coefficient characteristic of this topology.

References:

[1] Eric Bonabeau, Marco Dorigo, and Guy Ther-
aulaz. Swarm intelligence: From natural to arti-
ficial systems.J. Artificial Societies and Social
Simulation 4(1), 2001.

Souptik Datta, Kanishka Bhaduri, Chris Gian-
nella, Ran Wolff, and Hillol Kargupta. Distrib-
uted data mining in peer-to-peer networksEE
Internet Computing10(4):18-26, 2006.

Martin Ester, Hans-Peter Kriegel, Jorg Sander,
and Xiaowei Xu. A density-based algorithm
for discovering clusters in large spatial databases
with noise. InProc. 2nd Int. Conf. on Knowl-
edge Discovery and Data Miningages 226—
231, 1996.

Gianluigi Folino and Giandomenico Spezzano.
An adaptive flocking algorithm for spatial clus-
tering. INPPSN pages 924-933, 2002.

Jiawei Han and Micheline KambeData Min-
ing: Concepts and Techniques (The Morgan
Kaufmann Series in Data Management Sys-
tems) Morgan Kaufmann, September 2000.

[2]

[3]

[4]

[5]

Nicolas Monmarch, M. Slimane, and Gilles
Venturini. On improving clustering in numeri-
cal databases with artificial ants. BECAL '99:
Proceedings of the 5th European Conference on
Advances in Artificial Lifepages 626—635, Lon-
don, UK, 1999. Springer-Verlag.

Craig W. Reynolds. Flocks, herds and schools:
A distributed behavioral model. ISIGGRAPH
'87: Proceedings of the 14th annual confer-
ence on Computer graphics and interactive tech-
niques pages 25-34, New York, NY, USA,
1987. ACM Press.

D. J. Watts and S. H. Strogatz. Collective
dynamics of 'small-world’ networks. Nature
393(6684):440-442, June 1998.

[6]

[7]

[8]



