
A Proposal of a practical approach for quantified quality software
evaluation during the development cycle

AZARIAN Armin (1,2) – SIADAT Ali (2)

SIEMENS(1) AG A&D AS AP SE 3 IC - Laboratoire LGIPM
Ecole Nationale supérieure des Arts & Métiers

84 Siemensallee 76187 Karlsruhe – 4 Rue Augustin Fresnel 57007 Metz
GERMANY - FRANCE

armin.azarian@automation.siemens.com – ali.siadat@metz.ensam.fr

Abstract: - A large number of developed, acquired or purchased software tools do not respond to the users’
requirements and expectations which had been at the origin of the project. This is mainly due to two reasons:
firstly because the users’ requirements are not well identified or formalized, secondly because the software and
tool evaluation is not robust enough or does not have a minimum required quality [1]. The authors attempt to
propose a new approach in order to assess and quantify the quality of the software evaluation process. The
theoretical approach is based on elaborating a matrix (Anm) of software functionalities versus user’s scenarios.
The norm of the columns and lines vectors of this matrix may be considered as a quality indicator of the
software. The authors have applied such an approach on one case study.

Key-Words: - Software Evaluation, Practical Verification Validation, Development, Functional Decomposition

1 Introduction
1.1 Overview of software developing
Most Software-projects statistic points out that these
projects are late, over budget, lacking functionality,
or are never delivered [1] [2]. The CHAOS study [3]
reveals that only 16,2% of software projects are
completed on time and on budget in small companies
and around 31,1% of projects are canceled. Effective
requirement management has allowed much progress
to control quality, costs, schedule, functionalities and
exhaustiveness. Also, if in a software project all
requirements are adequately and exhaustively
fulfilled, it doesn’t imply that the developed software
tool does satisfy the user’s needs and expectations in
terms of functionalities or performance. The
following reasons can explain these cases (leading to
unsatisfying software products) [4]:

• Users don't understand what they want.
• Users won't commit themselves to a set of

written requirements.
• Communication between users and

engineers or development team is slow
and generates misunderstanding,
misinterpretations…

• Users often do not participate in reviews
or are incapable of doing so. And
engineers or developers do not understand
the user’s view and needs.

• Users don't understand the development
process.

These ways inhibit strongly user’s requirements
engineering for software [4].

 Software analysis and evaluation is an essential and
well established activity for improving software
development and the architecting community of the
software systems. The development effort, the time
and costs of complex systems are considerably high,
and nowadays there is an increasing need for a
practical formalized and comprehensive evaluation
method that encompasses all factors which affect the
software’s functionality and usability to achieve
system’s quality. The following section presents a
brief summary of the existing evaluation methods.

1.2 Existing evaluation methods
Evaluation techniques are activities of evaluators
which can be precisely defined in behavioral and
organizational terms [5]. Evaluation techniques are
usually classified into two categories: the descriptive
evaluation techniques and the predictive evaluation
techniques, both of which should be present in every
evaluation:

 Descriptive evaluation techniques:
- Behavior based methods:

They contain observations, “thinking
aloud” and video-confrontation method.
The result of these methods is an interview
protocol. The questions are mainly focused
on critical points, like interactions.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 331

- Opinion based methods:
 Interview methods, questionnaires like:

QUIS (Questionnaire for User Interaction
Satisfaction), SUMI (Software Usability
Measurement Inventory), Isometrics [5] are
part of these methods. The difference with
the previous methods is that they rely on
standard items and aim to reveal the user’s
opinion of the software [6].

These methods are used to describe the status and the
actual problems of the software in an objective,
reliable and valid way. All descriptive evaluation
techniques require some kind of prototype and at
least one user [7].

 Predictive evaluation techniques:
- Walkthrough methods:
 Usually papers with the software’s GUI are

presented to the evaluators [8]. They write
how they think they would use the software
and evaluate some standardized metrics for
each step. These methods are well indicated
to reveal usability problems.

- Expert inspections:
 The software is examined by a usability

specialist independent of the software
development team. The experts notes and
evaluates some items of the software. The
heuristic reviews [9] are a variant of this
method.

- Group discussion:
 Group discussions help to summarize the

ideas and comments held by individual
members. Each participant acts to stimulate
ideas, and that by a process of discussion, a
collective view is established which is
greater than the individual parts.

These methods aim principally to make
recommendations for future software developments
and the prevention of usability errors. These
techniques are expert – or at least expertise – based.
The criteria objectivity and reliability is hard to apply
in these techniques.

1.3 Summary of software evaluation methods
These methods insist mainly on the evaluation of a
part of the software product e.g.: User-Interface,
Tasks to perform… The achievement of objectives
results is expensive because they need to handle
many data (from questionnaires or camera-records)
[10] [11]. A subjective method delivers acceptance
results of the software products and exaggerates weak
points of the product. This paper proposes a matrix
based approach to formalize a measurement and

quantify the software quality and usability in order to
facilitate the verification and validation steps. This
paper proposes a matrix approach to formalize
measures and quantify the software quality and
usability. The approach consists on one hand, to assist
the developer’s team and the client for the
specifications and on the other hand to evaluate the
final product.

2 Proposed Approach
2.1 Description of the methodology
In the cycles of software development the first stage
consists in preparing the analysis of needs and the
feasibility study and often the second consists in
writing the specifications. However, there is no
formal methodology aiming at elaborating
specification according to the analysis issues
originating from the users’ needs. Furthermore, the
software is always tested aside when compared to the
specifications, not often corresponding to the
customers’ expectations and finally implying
insatisfaction (Fig. 1).

Software Product

Requierement Attribute

fulfilled have

Assigned
to

Figure 1: Software requirement engineering

The methodology proposed in this paper consists in
working out usability scenarios during the first step of
the software’s design cycle. The analysis of this
scenarios will point out the importance of the future
functionnalities and quantify their weight. These
usability scenarios represent the tasks which will be
performed by the future users of the software. The
drafting of these usability scenarios must be carefully
realized by the client. They represent the base of the
proposed evaluation method.
If there are several classes of users, then the scenarios
should be indexed SJ according to the classes CI . The
first stage consists in building a list of the scenarios
and to describe the functionalities (user’s
functionnality) which require an end-user action to be
undertaken. Then a matrix is conceived with the
scenarios users (dimension N) in rows and the
functionnalities in columns (dimension m). This
matrix called A is depictured in Fig. 2 (on the
assumption of a single class of users):

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 332

S
cenarios

Figure 2: Representation of the scenario-functionality
matrix

If dependent scenarios occur (eg. After a gaussian
reduction in order to eliminate redundancies) for a
same class of users they need to be re-worked or
supressed.
 This form makes it possible to visualize the coverage
of the evaluation. The coefficient δi,j is equal to 0 if
the scenario Si does not use the functionality fj (and 1
otherwise), the multiplying coefficient αi,j represents
the number of times the functionality fj is used in the
scenario Si. It is supposed that the coefficients of the
matrix are fixed manners to minimize complexity (cf.
below) of the scenarios (it means that the scenarios
are realized with the optimal number of
functionalities in this case). The properties of the
matrix A are deduced from the usual operators on the
linear algebra, in particular the rank of the matrix:
This makes it possible to visualize the redundancies
of the operations in the scenarios and the degree of
coverage of the evaluation.

The complexity of a scenario is noted C(Si) and
represents an index specifying the number of
functionalities which intervene in the elaboration of
this scenario. The formal definition is given by the
following equation (1):

C(Si)= ()∑
≤≤ mj

jiji
1

2
,, .δα (1)

The scenarios are also affected by a frequency
attribute which can be: “usual”, “alternative” or
“exceptional” called FU coefficient equal to 1, 1/2,
1/5. (eg: for the realization of a document over a
remote session is in usual case an exceptional
scenario and writing a document is a usual scenario
for a text processing software).
- The weight of the functionalities in the matrix:
This makes it possible to visualize the truly useful
functionalities to realize the scenarios. A weight
coefficient is assigned to each functionality (2):

G(Sfj) = ()∑
≤≤ ni

jijiiFU
1

2
,, .δα (2)

The functionalities with a weight coefficient equal to
0 are not necessary to realize the scenarios.
Consequently, these do not need to be developed.
 The scenarios having a too high complexity
compared to the average value require the designing
of new high level-functionalities which are
regroupings of smaller functionalities in order to
simplify the realization of the scenarios by the users
(see 3.2).
The functionalities which have a high weight must be
carried out with fast response times because they are
often used by the users. They also need to be easily
located on the GUI (Graphical User Interface).
 The columns which do not have any null vector must
be considered with caution, because corresponding to
a functionality requiring to be activated in each
scenario, it is consequently necessary to wonder
about the replacement of such functionality by an
adjustment by default (treated in 3.1).
This approach allows determining exactly what the
software system shall do. The matrix shows which
function are necessary. When the developed software
product is based on existing solutions, engineers can
extract from their existing product which parts can be
re-used and which need specific developments. In
that case the developers of the existing software
product need to elaborate the matrix, with the
functionalities of the existing system (a blank column
needs to be considered in the case that new
functionalities must be added to achieve the usability
scenario). The resulting matrix stipulates what must
be accomplished, transformed, produced, provided or
kept. It is also possible to decompose the
functionalities in usability (low level functionality)
and technical function (high level functionality), this
allows showing which internal parts (methods or
Libraries) should be re-used for the new solutions.
In this case, the method helps to establish a common
communication base between client and development
teams (who complicate the client’s view when they
refer to an existing solution). The solution could also
help the clients to write the functional requirements
of the Software product, because they visualize the
capabilities and characteristics of the wished software
systems.

2.2 Approach of the evaluation
The evaluation process will be performed according
to the same basis of pre-defined scenarios. This time,
an end-user will perform and execute the scenarios

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 333

with the help of a software prototype. The objective
is to set up a matrix named R (lines for scenarios and
columns for functionalities). This matrix R will be
thus compared to the matrix A (already defined in
previous section. One notes CR(Si) and GR(Sfj) the
complexity of the scenario Si and the weight of the
functionality Sfj in the matrix R. The coverage level
of the evaluation process depends upon the number
of listed functionalities knowing that the rank of the
matrix A indicates the action redundancy within the
scenarios.

 The comparison of C(Si) and CR(Si) enables the
user to know if the software is well designed. If
C(Si) < CR (Si) ; this means that the user invoked too
many functionalities than necessary for realizing the
scenario. It is also possible that the user did not find
the functions or icons through GUI or he/she used the
functionalities by chance and then suppressed the
actions. Such a situation could also happen in case of
inadequate settings or initialisation requiring a
corrective action of the user (see 3.1). This implies a
high useless complexity level and dissatisfaction of
the end-user.
 By viewing the actions of the end-user (or a
video-record of his action), it is possible to measure
the time that the user needs to find important
weighted software functionality. Such functionalities
often used, need to be placed in a position which
facilitates access by a shortcut icon. The icon needs
also to be well designed to facilitate the
comprehension of the executed function.

3 Application case
3.1 Use case for the designing of a drawing
software
The first example consist of the designing of a
software aiming to producing drawings. The 3
defined scenarios are as follows:

1. Draw a black square on a background
white colour and print it (S1)

2. Draw a pyramide with triangular basis
(without representing the hidden sides) on
a background blue colour and print the
drawing (S2)

3. Draw a blue square on a background
black colour and print it (S3)

Their is just one class of user and all scenarios are
considered as usual (FU=1 for all case). In these cases
the specific solution is build on the base of a
commercial available tool which presents the
following functionalities:

- Rectangular selection (Sf1)

- Clear (Sf2)
- Selection of a colour (Sf3)
- Zoom (Sf4)
- Airbrusch (Sf5)
- Text (Sf6)
- Right line (Sf7)
- Curve (Sf8)
- Rectangle (Sf9)
- Ellips (Sf10)
- Choice of colour selection (blue, white,

black, red, etc....) (Sf11)
- File save (Sf12)
- Print (Sf13)
- Fulfilling (Sf14)

The matrix of scenarios versus functionalities is
represented by figure 3 when considering that the
background colour by default is white and when
selecting a given colour, the choice remains valid.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

11020100000000
11020005000000
01010100000000

A

Scenario’s complexity:
C(S1) = 3 ;C(S2) = 31 ; C (S3) = 7

Functionalities-Weight:
G(Sf7) = 5 ; G (Sf9)= 2 ; G (Sf11)= 3 ;

G (Sf13) = 3 ; G (Sf14)= 2
For other functionalities: G (Sfi) = 0

Figure 3: Matrix of scenarios-functionalities

The rank of the matrix is 3 (Fig. 3): this implies that
none of the defined scenarios is redundant. According
to the theoretical approach explained above, the
complexity of each scenario as well as the weight of
each useful functionality is calculated knowing that
for other functionalities the weight factor is zero. It is
noticeable that Sf7 is the most important functionality
in terms of weight, implicating that it remains
indispensable.
 The complexity of the scenario N° 2 is higher than
the average which is also due to the subsequent use of
Sf7 and drawing of a pyramid. As a conclusion, it is
recommended that the software enables the user to
draw also a pyramid once and consequently reduces
the complexity of the scenario.
 Another noticeable aspect of the matrix concerns the
defaults settings. As the setting of the colour
necessitates user’s action, one can envisage the
modelling of such functionality. If the default color in
the drawing software is blue and if the scenarios
consist in drawing objects in black, then the preset

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 334

black for the color will allow simplifying
considerably the complexity of the scenarios.
The conclusions of the methods for this example are:

- The functionalities Sf1, Sf2, Sf3, Sf4, Sf5,
Sf6, Sf8, Sf10 and Sf12 did not to be
implemented because their weight is null.

- A new high-level functionality which
allows to draw pyramids needs to be
conceived.

- The black as default color setting is
advantageous for the defined scenarios.

 The functionalities with a high weight (often used to
realized the scenarios) must been realized with fast
response time and must be easy to locate on the GUI
by the users.

3.1 Use case for the validation of a drawing
software
If the precedent software has been realized without
the functionalities Sf1, Sf2, Sf3, Sf4, Sf5, Sf6, Sf8,
Sf10, Sf12 , and without a function to draw pyramids
and that a future user realizes the 3 scenarios
developped in section 3.1, then the functionalities
used by the user to conclude the scenarios are
represented in a matrix form (the scenarios are the
lines of the matrix and the functionnalities are the
colunms). We suppose we obtain the matrix R
represented in Figure 4 (the indexes of the
functionnalities Sf7 respectively Sf9 ; Sf11 ; Sf13 ; Sf14
are changed by the indexes: 1 respectively 2,3,4,5).
The matrix A represents the matrix issue from section
5.1 with the new indexes of the functionalities.

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛
=

11210
11205
01110

11304
11205
01104

AR

Figure 4: Matrix A and R

If the matrix A and R are being compared (Fig. 4), the
complexity of the scenarios 1 and 3 of the matrix R
are superior to those of the matrix A. This is the result
of a wrong manipulation of the software by the user,
because he didn’t use the function „rectangle” for the
scenarios 1 and 3, he prefered to use 4 times the
function „right line” to design a rectangle. The user
did not remark the icon of the function „rectangle”,
and the software did not mention the existence of this
function to teach the user. A dialog box could have
appeared and mention the function after recognizing
that the user traces a rectangle by using 4 times the
functions „right line”.

The comparaison of these two matrixes highlights
that the user didn’t use the software as mentioned.
The cultural origin, the age, and the knowledge of the
final users must be considered to design
comprehensive icons, so that they are placed
adequately in the GUI. Furthermore we can consider
dialog boxes which inform the user of new
functionalities.

4 Conclusion
There are many evaluation techniques which can be
applied in practice, although many of them need to
devote many efforts and special competences
(experts). The method developed in this article allow
for small companies to apply a low cost evaluation in
particular with no experts knowledge, and to use this
method to develop a practical verification and
validation (V&V) tool in order to achieve an
evaluation of the software’s quality (with the help of
the user scenarios). The method combines cost-
benefits, adequate coverage of the functionalities, and
a feedback which enables the user to increase the
software’s usability. This method is similar to the
axiomatic design method which aims to “make
human designers more creative, reduce the random
search process, minimize the iterative trial-and-error
process, and determine the best design among those
proposed.”, by revealing the needs of developing high
level functionalities. The methods also propose a
common base to avoid articulation problems between
clients and engineers.(The engineers can visualize the
user’s issue, which is a frequent occurred situation).
 The complexity level of each scenario as well as the
weight factor of each functionality considered as a
performance metric are defined. The software
evaluation method allows to understand the design
imperfections especially regarding the GUI for which
the weight factor is playing a major role in order to
highlight the useful functionalities offered by GUI.
The basic criteria of the matrix approach are matrix
rank, scenario complexity and functionality weight
coefficient. The quantification is made by calculation
of the norms of line and column vectors and
comparison with average values. The theoretical
approach has been applied to a fictive drawing
software study. The results seem satisfactory and
meaningful.
 A tool has being designed to compute automatically
the weight of the function and the scenario’s
complexity.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 335

Figure 5: GUI of the Software Evaluation tool

In Fig. 5 the GUI of the tool which implements the
proposed evaluation method is depicted.

 In a near future, this method will be retained for the
case of the development of a branch specific solution
based on an existing commercially available tool in
order to provide the parts that need client-specific
development and the parts that need to be
transformed or kept by achieving the user’s issue in
mind. This case will take into account different user
classes and also the role of the frequency attribute of
the scenarios.

5 Acknowledgment
This work has been partly performed within Siemens
AG Company (Germany). The authors wish to thank
this company for the support and opportunities
offered for performing this research work.

References:
[1] X1. Azarian, A., Brindejonc, V., Bruère, J.M,

Investigation about elearning systems –
SINTES’12, 2005

[2] X2. Zelesnik, G., Introduction to Software
Requirements. (Requirements Engineering
course material), Software Engineering
Institute, Carnage Melon University, Pittsburgh,
PA. eds. 1992

[3] X3. Yannouth, M., CHAOS (Application Project

and Failure), Standish Group Study, 1995,
pp.1-4

[4] X4. Boehm, B.W., Software Engineering
Economics. Englewood Cliffs, NJ: Prentice-
Hall, Inc. 1981

[5] X5. Gediga, G., Hamborg, K. C., Heuristische
Evaluation und IsoMetrics: Ein Vergleich, 1997

[6] X6. Dzida, W., Qualitätssicherung durch
software-ergonomische Normen, 1994

[7] X7. Nielsen, J., Usability engineering at a
discount. ACM New-York, 1989

[8] X8. Carroll, J. M., Human-Computer
Interaction: Psychology as a science of design,
International, Journal of Human-Computer
Studies, p. 46, pp. 501–522, 1997

[9] X9. Nielsen, J., Heuristic evaluation New York.
Wiley, 1994

[10] X10. Eberleh, E., Oberquelle H., Oppermann R.,
Einführung in die Software-Ergonomie, Berlin.
de Gruyter, 1994, pp. 373–406

[11] X11. Salvendy, G., Smith, M., Designing and
Using Human-Computer Interfaces and
Knowledge Based Systems, Amsterdam.
Elsevier, 1987, pp. 394–401.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 336

