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Abstract: - Decomposition of multi-exponential and related signals is generalized as a filtering problem on a 

logarithmic time or frequency scale and FIR filters operating with logarithmically sampled data are proposed to 

use for its implementation. The filter algorithms and types are found for various time-domain and frequency-

domain mono-components. It is demonstrated that the ill-posedness in the multi-component decomposition 

manifests as high sampling-rate dependent noise amplification coefficients. The noise transformation control of 

a filter is provided by algorithm design, which integrates together the signal acquisition, the discrete-time filter 

design and the regularization based on choosing an optimum sampling rate. As an example, an algorithm is 

designed for the decomposition in the frequency-domain. 
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1 Introduction 
Many areas of science and technology, such as 

material science, mechanics, biology, nuclear and 

electrical engineering, etc. face the problem of 

analysing monotonic and locally monotonic signals. 

The multi-component signals with the real decaying 

exponentials are probably the most studied case, 

although the similar problems arise for many other 

monotonic mono-components, such as integrals, 

derivatives, real and imaginary parts of the Fourier 

transforms of the real exponentials. 

     Although the analysis of monotonic signals is not 

new, let remember the classical Gardner work [1] 

published almost 50 years ago, and is widely studied 

in various fields [2-6], and especially in relaxation 

spectroscopy [7-9], the problem remains a 

challenging signal processing task. The principal 

reasons are the exceedingly non-orthogonal 

behaviour of the monotonic signals no constituting 

an orthogonal base, and the fundamental ill-

posedness in the sense that small perturbations in 

input signal can yield unrealistic high perturbations 

in the decomposition results. 

     Motivation of this work is to find new 

possibilities for analysing multi-component 

monotonic signals based on the up-to-date data 

processing technologies [10] and to derive accurate, 

robust and computationally efficient algorithms. 

 

2 Monotonic Multi-component 

Signals 
Multi-exponential decays may be described by the 

following model 

∫
∞

−=
0

)/exp()()( τττ dtGtx , (1) 

where G(τ) is a function of distribution of time 

constants (DTC) or spectrum of time constants. For 

the discrete (line) spectrum, G(τ) takes the form 

∑ −=
n

nn
GG )()( ττδτ ,   

where δ(τ) is the Dirac delta function. 
     In some fields, e.g. in relaxation studies [7-9], Eq. 

(1) is modified in the form 

∫
∞

−=
0

/)/exp()()( ττττ dtFtx ,  (2) 

where the new, so-called  logarithmic DTC function 

τττ )()( GF = , is introduced. 

     To generalize model (2) for other monotonic and 

locally monotonic signals, we modify it into the form 

∫
∞

=
0

/),()()( ττττ duKFux ,  (3) 
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where variable u is time or frequency, and kernel 

K(u,τ) represents a family of the time-domain and 

frequency-domain mono-components being of great 

importance in various fields 
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Kernels (4b) and (4c) represent the derivative and 

integral, respectively, of the basic real decaying 

exponential (4a). In its turn, kernels (4d) and (4e) 

embodies the real parts and imaginary parts of the 

Fourier transform of (4b). A pair of kernels (4f) and 

(4e) describes the frequency response of the system 

inverse to that characterized by a pair of kernels (4d) 

and (4e). 

 

 

3 Filtering Approach for DTC 

Recovery 
 

3.1 Background  
Since kernels (4a) – (4f) depend on the ratio or 

product of arguments u and τ, model (3) may be 

converted in the form of the Mellin convolution type 

transform 

∫
∞

==
0

/)/()(*)( ττττ dukFkFux
M

 (5) 

where 
M

*  denotes the Mellin convolution and k(u) are 

kernels (4a) – (4f) modified in the form needed for 

converting Eq. (3) into Eq. (5) (canonic kernels 

[11]). 

     Monotonic multi-component signals (3) are 

typically recorded over long intervals of time or 

broad ranges of frequency [7-9], due to this, it is 

useful to consider them on a logarithmic scale 

,/log
0

* uuu
q

=   (6) 

where u0 is an arbitrary normalization constant. For 

logarithmic arguments (6), to remember that 
*

0

uquu = , Eq. (5) alters into the appropriate Fourier 

convolution type transform ( 1
0
=u ) 

)(*)()(
*** u

F
uu qkqFqx = .   

Consequently, DTC may be formally determined by 

the appropriate deconvolution 

)(*)()(
*1** u

F
uu qkqxqF −= ,  (7) 

which can be considered as an ideal DTC estimator. 

Deconvolution (7) represents a linear shift-invariant 

system or an ideal filter [10] on a logarithmic time or 

frequency domain with impulse responses )(
*1 uqk −  

existing in the sense of generalized functions. The 

analytic expressions of )(
*1 uqk −  are not known, 

however one may derive the appropriate frequency 

responses as the reciprocals of the Mellin transforms 

of canonic kernels k(u) 

∫
∞

−−=−=
0

1)(/1]);([/1)( duuukjukMjH jµµµ , (8) 

where parameter µ named the Mellin frequency [12] 

represents the frequency of a signal (function), 

whose independent variable (time or frequency) is 

logarithmically transformed.     

     In the frequency domain, deconvolution (7) may 

be described as  

)(/)()( µµµ jKjXjF
T

=   (9) 

where FT(jµ), X(jµ) and K(jµ) are the Fourier 

transforms of functions )(
*uqF , )(

*uqx  and )(
*uqk  

with logarithmically transformed arguments. At the 

same time, FT(jµ), X(jµ) and K(jµ) represent also the 
Mellin transforms of original functions F(u), x(u) 

and k(u) on linear scale. 

     Spectral representation (9) is a basis of the 

classical methods of Gardner [1], Schlesinger [2] and 

Roesler [3] implementing the decomposition by the 

following general scheme  

)]}(DFT[/)](IDFT{DFT[][
** uu

m
qkqxF =τ , (10) 

where IDFT and DFT are abbreviations of direct and 

inverse discrete Fourier transforms. Similarly, 

spectral representation (9) is used in the method 

Prost and Goutte [4,5] implementing the 

decomposition by the direct and inverse discrete 

Mellin transforms ((DMT) and (IDMT)) 

)]}(DMT[/)](IDMT{DMT[][ ukuxF
m
=τ . (11) 

    Our idea is to implement deconvolution (7) in 

direct way by a FIR filter operating with equally 
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spaced samples on a logarithmic scale, which may be 

represented in the following non-causal algorithm  

∑
∞

−∞=
−=

n

nmm
uxnhuF )(][)( ** ,  (12) 

where h[n] is impulse response, which, of course, 

must be limited to the finite length in practice. 

     To take into consideration that equally spaced 

samples on a logarithmic scale manifest as the 

logarithmically sampled data on linear scale where 

distance between samples increases according to the 

geometric progression 

...2,1,0, = m    ,qu = u
m

m
±±

0

* ,   

algorithm (12) modifies into the following general 

form: 

( )∑
∞

−∞=

−=
n

nmm quxnhquF
00

][)( . (13a) 

     Direct implementation of the deconvolution by FIR 

filter has some advantages. First, its realization with 

hardware or software is much simpler. Second, the 

direct implementation can potentially give the higher 

accuracy because does not require to perform the 

Mellin or Fourier transform of the noisy signals to be 

limited by a finite length window contributing the 

basic errors in approaches (10) and (11). 

 

 

3.2 Algorithms of DTC estimators 
Eq. (3) with kernels (4a) and (4c) forms exactly the 

Mellin convolution type transform (5), for which 

algorithm (13a) can be directly applied to. For the 

other kernels of Eq. (4), general algorithm (13a) 

modifies into the following two sub-algorithms 

(13b) 
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(13c) 

where Eq. (13b) relates to kernel (4b), while Eq. 

(13c) relates to the frequency-domain data, i.e. to 

kernels (4d) –  (4f). 

    Usually [11,12], the considered here filters are 

used with the equal number of coefficients about 

their origins. Thus, for odd number of filter 

coefficients N, general algorithm (13a) takes the 

form 

( )∑
−

−−=

−=
2/)1(

2/)1(

00
][)(

N

Nn

nmm quxnhquF , 

where  the origin of impulse response coincides with 

zero sample h[0]. For even number of filter 

coefficients, the origin of impulse response may be 

located in the middle between the samples h[–1] and 

h[0], then algorithm (13a) modifies into the form 

( )∑
−

−−−=

−−=
2/)2(

12/)2(

5.0

00
][)(

N

Nn

nmm quxnhquF . 

 

 

3.3 Types of DTC estimators 
For six kernels (4a) – (4f), Eq. (8) gives the three 

following ideal frequency responses  

for (4a) – (4c) (14a) 

for (4d) and (4f) (14b) 
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ππµ
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for (4e) (14c) 

i.e. for the time-domain data, for the real parts, and 

for the imaginary parts, respectively. Consequently, 

only three independent sets of coefficients h[n] are 

necessary for implementing decomposition (3) for 

six kernels (4a) – (4f). The filters have similar – very 

steep growing magnitude responses (Fig. 1) 

indicating their inverse nature [11]. 

 
Fig. 1. Magnitude responses of the three ideal DTC 

estimators. Vertical lines and upper X-axis show the 

bandwidths corresponding to different q. 

 

     Frequency response (14a) of the ideal DTC 

estimator employing the time-domain data is a 

complex function. From the symmetry property of 
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the Fourier transform [10], it follows that the 

appropriate impulse response has no symmetry, or, 

in other words, the estimators recovering DTC from 

the time-domain data belong to so-called non-linear 

phase systems. 

     In contrast, frequency response (14b) is a pure 

imaginary function, while response (14c) is a real 

function. This indicates that the estimators 

recovering DTC from the frequency-domain data are 

linear phase systems [10]. 

     In Fig. 2(a, c), schematic approximation of ideal 

frequency response (14b) is shown by the 

appropriate frequency responses of a discrete-time 

filter 

( ) ∑ −=
n

j qnjnheH )lnexp(][ µµ  (15) 

with odd and even number of coefficients.  

     In the case of odd number of coefficients, the 

estimator represents type III linear phase filter [10] 

having the frequency response, which crosses zero at 

the ends of bandwidth qln/πµ ±=  and at zero 

frequency (Fig. 2(a)). It has the anti-symmetric 

impulse response ( ][][ nhnh −−= ) (Fig. 2(c)). In the 

case of even number of coefficients, the estimator 

represents type IV linear phase filter having the 

frequency response crossing zero at zero frequency 

and having non-zero values at the ends of the 

bandwidth qln/πµ ±=  (Fig. 2(b)). It has an anti-

symmetric impulse response ( ]1[][ −−−= nhnh ) 

(Fig. 2(d)). 

 

 

Fig. 2. Schematic approximation of frequency 

response (14b) with odd (a) and even (b) number of 

coefficients, and examples of the appropriate discrete 

impulse responses (c) and (d).      

 

     In Fig. 3, the similar plots are shown for an 

estimator with ideal frequency response (14c) 

employing the imaginary parts. In this case, the 

estimator with odd number of coefficients represents 

type I linear phase filter having the symmetric 

impulse response ( ][][ nhnh −= ) (Fig. 3(c)), while 

the estimator with even number of coefficients 

represents type II linear phase filter having the 

symmetric impulse response ( ]1[][ −−−= nhnh ) 

(Fig. 3(d)).  

 

 

Fig. 3. Schematic approximation of frequency 

response (14c) with odd (a) and even (b) number of 

coefficients, and examples of the appropriate discrete 

impulse responses (c) and (d). 

 

 

4 Noise Behaviour and Ill-posedness 
The decomposition is characteristically ill-posed in 

the sense that small perturbations in multi-

component signal can yield unrealistic high 

perturbations in the output DTC. The noise 

behaviour of a DTC estimator is characterized by 

noise coefficient S transforming input noise (random 

error) variance 2

xσ  into the output noise variance 2

yσ   

22

xy
Sσσ =   

being equal to sum of the square filter coefficients   

][
1

nh = S 2
N

n

∑
=

σ .  (16) 

     The Parseval theorem [10] allows determining 

noise coefficient S also through frequency response 

∫
−

=
q

q

dHqS

ln/

ln/

2

(.))2/(ln

π

π

µπ , (17) 

where ideal frequency responses (14a) – (14c) give 

inherent to the decomposition theoretical noise 

coefficients 
theor

S  for the given progression ratio q,  
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while frequency responses (15) of digital estimators 

provides actual experimental noise coefficient (16). 

     As follows from Eq. (17), increasing the sampling 

rate (decreasing q) extends operating bandwidth 

[-π/lnq, π/lnq] of a filter (see Fig. 1), and, 

consequently, the appropriate area under the 

magnitude response quoting the value of noise 

coefficient S. Due to the increasing frequency 

responses, the theoretical noise coefficient increases 

with decreasing progression ratio q and tends to ∞, 
when q approaches 1 (see curve Stheor in Fig. 4). 

Thus, the ill-posedness of the decomposition 

manifests as the large noise coefficient coming the 

large area under magnitude response, which, in its 

turn, results from the wide bandwidth. It can be 

concluded that the ill-posedness may be controlled 

by progression ratio q and quantitatively 

characterized by the noise coefficient S.      

 

 

5 Algorithm Design 
Practice shows that best results for the multi-

component decomposition give discrete-time filters 

designed by the identification method [11] where a 

pair of theoretical functions interrelated with each 

other by theoretical deconvolution (7) are used as 

input and output signals in the filter design. To use 

the identification method, the filter specification 

(number of filter coefficients N and progression ratio 

q) shall be known. According to Section 4, 

progression ratio q must be chosen to ensure the 

needed noise coefficient S. On the other hand, choice 

of q and N is limited by time or frequency range of 

available input data.  

     Thus, the conventional two-step signal processing 

approach [10] consisting of separate (i) signal 

acquisition step, where the signal is sampled 

uniformly in time above its Nyquist rate, and (ii) 

discrete-time algorithm implementation step, is not 

applicable to the decomposition, and the algorithm 

design must integrate together [13]: (i) signal 

acquisition, (ii) filter design and (iii) regularization. 

     The appropriate algorithm design method is 

described in [13]. To link q and N with input data, a 

parameter – the dynamic range of time or frequency 

of input signal portion used for computing an output 

sample (further ‘input window range’)  

1/ −
−+ == N

x
quud ,  (18)    

is introduced, which determines the combinations of 

q and N allowable for filter design. 

 

6 Example of DTC estimator design 
The bellow, an example of the algorithm design is 

considered for the frequency-domain decomposition 

of a multi-component signal with mono-components 

in the form of real parts (4d). 

     Let us assume that: (i) a FIR DTC estimator with 

even number of coefficients has to be designed; (ii) 

the noise coefficient S shall not exceed 10; input 

window range dx shall not exceed 500. 

     In Fig.4, noise coefficients S are shown versus 

progression ratio q for various input window ranges 

dx. 

 

Fig. 4. Theoretical and experimental noise 

coefficients of DTC estimators having even number 

of coefficients for various input window ranges dx. 

Horizontal and vertical arrows show the values of S 

and q corresponding to acceptable noise coefficient 

Sacc = 10. 

 

     From Fig. 4, it follows that to ensure noise 

coefficient 10≤
acc

S , progression ratio must be within 

interval 9.3...9.2=q . We choose q = 3.3. From Eq. 

(18) and condition 500≤
x

d , it follows that the 

estimator must have 6=N coefficients (dx = 391). 

By the identification method, the following 

coefficients have been obtained [14]: 

}033296.0,129207.0,05880.1

,05880.1,129207.0,033296.0{]6[

−

−−=h
.  

For noiseless data corresponding to the discrete 

spectrum, the designed estimator gives DTCs 

without non-physical oscillations (Fig. 5). It has 

noise coefficient S = 2.28, which means that the 

noise variance for recovered DTC is amplified 2.28 

times to compare with that of the input signal or the 

standard deviation of DTC noise is amplified 
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51.128.2 =  times to compare with the input noise. 

It must be noted, that such relatively high noise 

immunity for an inverse filter is achieved at the 

expense of decreased resolution; the estimator allows 

separating two spectral lines only, if 2.5/
1

≤+ ii
ττ . In 

general, the proposed filtering approach is more 

preferable for recovering continuous DTC [14]. 

      

 
Fig. 5. Recovered DTCs for the line spectra: unity 

spectrum at 1=τ  (curve 1); two unity line spectra at 

42.0
1
=τ  and 37.2

2
=τ  (curve 2) and at 1.0

1
=τ  

and 10
1
=τ  (curve 3). The recovered DTCs are 

calculated by algorithm (13c) modified into the form 

)/3.3(][)(
2

3

5.0∑
−=

−−=
n

nxnhF ττ . 

 

 

7 Conclusions 
FIR filters operating with equally sampled data on a 

logarithmic time or frequency scale are proposed to 

use for decomposition of multi-exponential and 

related signals, such as integrals, derivatives, real 

and imaginary parts of the Fourier transforms of the 

real exponentials. The filter algorithms are found for 

various time-domain and frequency-domain mono-

components. It is disclosed that the non-linear phase 

filters are required for implementing decomposition 

in the time-domain, while the linear phase filters 

shall be used for the decomposition in the frequency-

domain. 

     It is demonstrated that the ill-posedness in the 

multi-component decomposition manifests as high 

sampling-rate dependent noise amplification 

coefficients. The noise transformation control of a 

filter is provided by algorithm design, which 

integrates together the signal acquisition, the 

discrete-time filter design and the regularization 

based on choosing an optimum sampling rate.   

     As an example, an algorithm is designed for the 

decomposition in the frequency-domain. 
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