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Abstract:This paper presents a computational method for the mechanical simulation of carbon nanotubes, whose
complexity is linear on the number of atoms. The regularity of a graphene lattice at its energy ground permits the
definition of a tiling scheme that is applied to the surface ofnanometric carbon pipes. The scheme employs ele-
mentary Y-shaped cells and proposes a coherent combinationof a discrete approach with a continuous elastic beam
reference for the numerical simulation of complex structures. In the molecular region, the employed potential is
obtained from the local harmonic approximation and leads toan explicit formulation of the acting forces, therefore
permitting the dynamical prediction of large deformationsas bending and torsion. The study includes a numerical
consistency check based on the conservation of the global energy of the molecular system. As a conclusion, future
developments and possible applications of the proposed scheme are presented.
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1 Introduction

Carbon nanotubes (CNTs) attract increasing attention
since the initial report on their existence [1], followed
by subsequent reports on the possibility of feasible
conditions for their synthesis in sizeable quantities [2]
and simulations of their growth process [3]. Their
physical properties make them extraordinary research
objects: they exhibit fascinating mechanical, elec-
tronic and thermal peculiarities. From the mechani-
cal point of view, their large tensile strength is com-
bined with extreme flexibility; these exceptional prop-
erties contribute to the outstanding potential of CNTs.
Interestingly, they can be filled with fluids or with
fullerenes [4, 5, 6, 7, 8, 9, 10]. Their behavior under
deformation is the subject of intense investigations;
nonetheless, mechanical experiments at this scale are
themselves still under development: at the nanomet-
ric length scale, correct determination of the sam-
ple, selective placement of the research object, pre-
cise load imposition and appropriate measurement are
challenging tasks to experimentalists [11, 12]. There-
fore, the computational investigation of the mechani-
cal properties is fully justified in order to
◦ explain the observed results [13],

◦ obtain information that is currently inaccessible in
experiments [14],

◦ guide the exploration of new research frontiers [15].

Current research on CNTs and related carbon
nanostructures is still at an early stage of development,
but these objects are already beginning to exhibit their
exceptional properties, many of which may lead to
practical applications [16]. In particular, the biocom-
patibility of the tubules, combined with their outstand-
ing strength, attracts a great interest for biomedical
applications. In a growing number of laboratories
around the world, CNTs and nanohorns [17] are con-
sidered as efficient storage systems, with promising
applications for hydrogen storage in fuel cells [18,
19]. Moreover, CNTs are known to resist degradation
in the types of chemical environment present in the
human body and are considered also for drug delivery:
they could be implanted without trauma at the sites
where a drug must be slowly released. Their consid-
erable potential in cellular experiments is motivated
by their future use as nanopipettes for the distribution
of extremely small volumes of liquid or gas onto sur-
faces or into living cells. Also, their property of high
capillarity increments the interest of their application
in nanofluidics [20, 21].

CNTs are extremely flexible and, at the same
time, thin, long but also rigid and strong. Even
extreme deformations are reversible: when strongly
bent, they buckle instead of breaking and their initial
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shape is rapidly restored. This peculiarity can be also
exploited for a new generation of scanning probe tips
for Atomic Force Microscopy [22], obtained by at-
taching a CNT to a standard microscope tip. Another
example of their mechanical usefulness as tools for
control in nanofluidics is given by nanotweezers [23],
where two tubules are mounted on independent elec-
trodes over a micropipette and can pick up submicron
particles. The tweezing action is caused by the elec-
trostatic attraction between the two nanotubes when a
bias is applied between them.

This paper is organized as follows. First, this
section presents the tubules and their possible appli-
cations. The introduction justifies the necessity of
mathematical modeling and of an efficient method for
the numerical simulation of these structures. In the
following section, the formal modeling framework is
presented, comprising the geometrical aspects and the
choice of the specific molecular potential. Then, the
numerical method is proposed; it can simulate the
mechanical deformation of the tubules and, conse-
quently, permits a form of precise mechanical control
of the axial bending. Finally, conclusions and outlook
for future works follow.

1.1 From Graphene to Carbon Nanotubes
Graphite and diamond are allotropes of carbon that
are known from ancient times; other allotropes, like
fullerenes and CNTs, have been discovered only ten
to twenty years ago [1]. Graphite is made of layers of
graphene, but the latter is not an allotrope of carbon
because of its finite thickness. More precisely, a sheet
of graphene at rest consist of a hexagonal lattice of
carbon atoms, where the atoms occupy the vertices of
the hexagons; perfect sheets consists purely of hexag-
onal cells, while defects are constituted by spurious
pentagonal and heptagonal cells. Graphene is the two-
dimensional counterpart of graphite and, from many
points of view, is the best theoretically studied struc-
ture of carbon and the starting point in several calcu-
lations regarding graphite, CNTs [24] and fullerenes.

The results of various experiments with transmis-
sion electron microscopy [25], Raman scattering [26],
resistivity [27], scanning tunneling microscopy [28]
and susceptibility are consistent with the identifica-
tion of CNTs with cylindrical graphene sheets of sp2-
bonded carbon atoms. Hence, they can be easily de-
scribed as rolled graphene sheets, whose mechanical
properties follow from the nature of the bonds be-
tween the carbon atoms. These in-plane bonds are
the strong covalent bonds that bind the atoms in a
graphene sheet.

In graphite, two-dimensional graphene sheets are
stacked to form the three-dimensional structure. In

each layer of graphene, successive layers are stacked
in an interleaving sequence. The interlayer distance
is dp = 0.335 nm and the nearest-neighbor distance
is aCC = 0.142 nm [29]. At room temperature, the
latter distanceaCC is the smallest of all the solid ele-
ments at room temperature and this implies, combined
with the large distance between the layers, that the
surfaces are electrically, chemically, and mechanically
nearly unconditioned. That’s the reason why most of
the physical and chemical properties of graphite and
of CNTs can be understood from graphene.

1.2 Chirality
CNTs are usually classified into Single-Walled (SWC-
NTs) and Multi-Walled (MWCNTs) Carbon Nan-
otubes; the former class consisting of single graphene
sheets and the latter comprising several nested SWC-
NTs. For the sake of simplicity, the present work con-
cerns cylindrical portions of SWCNTs but it is not
limited to those structures; it successfully applies also
to carbon nanohorns [30] and nanotori [31].

SWCNTs can be mathematically classified ac-
cording to their helicity and radius. The classification
is based on an ordered pair of integers(n,m) ∈ N

2. A
mathematical description of a perfect graphene sheet
at rest is presented here, in order to simplify further
formalizations.

Let a graphene sheet at its ground energy config-
uration be on the plane that is described byR

2. Then,
let Q1 ∈ R

2 be the position of the atomQ1, consid-
ered as a single point on that plane. LetQ2 be the po-
sition of another atom, namelyQ2, in the lattice, such
that the latter shares a covalent bond with the former
in Q1. Let a vector beQx =

−−−→
Q1Q2 and let beQy

another vector such that

Qx ⊥ Qy (1)

and that
‖Qx‖2 = ‖Qy‖2. (2)

Because of the hexagonal nature of the lattice, two
additional vectors are specified in order to simplify the
classification of SWCNTs according to their chirality.
These are defined as follows:

a1 =
3

2
Qx +

√
3

2
Qy,

a2 =
3

2
Qx −

√
3

2
Qy.

(3)

The ordered pair of integers(n,m) ∈ N
2 has the ad-

ditional constraint

m ≤ n, (4)
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which is introduced in order to eliminate the multi-
ple definitions caused by the sixfold geometry of the
hexagonal lattice and its point group symmetry. This
pair of integers defines a chiral vector [32]

Ch = na1 + ma2, (5)

that connects two crystallographically equivalent sites
on the graphene lattice [33] and permits the definition
of the chiral angle of the tubuleθ and of its diame-
terDt. The former is given by

θt = arctan

( √
3m

(m + 2n)

)

(6)

and the latter by

Dt =

√
3

π
aCC

√
m2 + mn + n2. (7)

According to their chirality, CNTs are named
“zigzag” when identified by the couple(n, 0), “arm-
chair” by the couple(n, n), and “general chiral” oth-
erwise [32]. Chirality must be considered in precise
computations of the mechanical behavior, since it in-
fluences the mechanical properties of the tubules [34].

2 Numerical Modeling
CNTs are at the boundary between structures and
molecules. Reflecting their condition, modeling ap-
proaches can be generally classified into two cate-
gories: atomistic and continuum modeling [24, 13].
For the former approach, the major computational
technique is molecular dynamics, which is very com-
prehensive but also computationally expensive; in-
teractions are obtained by multi-body potentials with
simple analytical forms and their complexity grows
polynomially with the number of atoms but seldom
linearly. As a result, operable applications are limited
to small and short-lived systems. As to the second ap-
proach, it simplifies the model by treating CNTs as
continuum elastic shells or as membranes with bend-
ing stiffness, extending classical continuum mechan-
ics. However, these latter models risk to be too re-
ductionist; without a combined approach, they are al-
most unable to account for forces acting on individual
atoms and for the lattice vacancies that constitute re-
alistic defects [35].

2.1 Lattice Modeling
Lattice modeling is a field of active research which
is common in several disciplines; here, the discrete
mechanical model consists of atoms and interatomic

bonds. Reflecting the repetitive display of the lat-
tice on a graphene sheet, a numbering scheme is pre-
sented in order to define the discrete counterpart of
the reference configuration in continuum mechanics.
The identification of the atoms with the vertices of the
hexagons holds even when a mechanical deformation
modifies the regular pattern, producing hexagons that
are not planar nor isometric. Thus, the numbering can
be performed with reference to the unstressed configu-
ration of the sheet, obtaining a structure that describes
the entire sheet as the tiling repetition of an elemen-
tary Y-shaped cell. First, this modeling technique is
applied to graphene [36] and, finally, to CNTs.

Formally, a sheet of grapheneG(A,B, C) is com-
posed by a set of carbon atomsA, a set of binary
bondsB and a setC of couples of bonds that share
a common atom. Every atoma ∈ A is considered
as a material point with massma. It has a unique la-
bel and its time-dependent position, which are respec-
tively represented as follows:

laba ∈ Z
2 × {1, 2},

posa(t) ∈ R
3, ∀t ∈ [t0,+∞).

(8)

Every bondb ∈ B is an ordered pair of atoms and,
similarly, everyc ∈ C is an ordered pair or bonds

b = (b1, b2),

c = (c1, c2).
(9)

Now, let the set of vectors{ix, iy, iz} be an orthonor-
mal basis forR3 and let the graphene sheetG be
at rest on the plane given byspan{ix, iy} at time
t̂ ∈ [t0,+∞), that is

∀a ∈ A posa(t̂) ∈ span{ix, iy}. (10)

Let the origin ofR3 coincide with the position of the
atom aO ∈ A. Because of the hexagonal structure
of the lattice, another useful coordinate system that
is not orthonormal can be specified for the physical
space. Two new linearly independent vectorsJ1,J2

are introduced, such that

J1 =
√

3ix,

J2 =
√

3

(
1

2
ix +

√
3

2
iy

)
.

(11)

As the length of the carbon–carbon bondaCC is
subnanometric [36], it’s convenient to introduce the
scaled versions of the previous vectors:j = aCCJ.
Without loss of generality, it can be assumed that the
vector

s = aCC

(√
3

2
ix +

1

2
iy

)
(12)
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connects two bonded atoms ofG. Two rhomboidal
grids A1,A2 are defined on the planespan{j1, j2};
these are two lattices of atoms that partitionA. The
former is defined by

A1 = {a ∈ A|posa(t̂) = α1j1 + α2j2,

(α1, α2) ∈ Z
2}

(13)

and the latter is the shifted versionA2 = A\A1 by the
shifting vectors. As a consequence of this partition,
it’s possible to associate a unique label to every atom
a ∈ Ak ⊂ A following the rule

laba = (α1, α2, k) ⇔ posa(t̂) = α1j1 + α2j2 + δk1s,
(14)

whereδk1 is the Kronecker’s delta.

2.2 Elementary Cells

The Y-shaped cell is the elementary tile that covers
the entire graphene sheet. There is a different cell for
every atoma ∈ A1 and every cell is uniquely iden-
tified by the ordered pair of integers(α1, α2) ∈ Z

2

that appears inlaba = (α1, α2, 1). Three bonds
and two atoms constitute a cell and, hence, every cell
Y (α1, α2) is given by the quintuple

Y (α1, α2) = (a1(α1, α2), a2(α1, α2),

b1(α1, α2), b2(α1, α2), b3(α1, α2)),
(15)

where, fori = 1, 2,

ai(α1, α2) = (α1, α2, i) ∈ Ai. (16)

As every bond is specified by an ordered pair of neigh-
boring atoms, for every cellY (α1, α2) the pattern is

bk(α1, α2) = ((α1 − δk1, α2 − δk2, 2), (α1, α2, 1)).
(17)

A vector is associated with every bondb = (a1, a2),
b ∈ B at timet; it is represented as

B(t) = posa1
(t) − posa2

(t) (18)

and its lengthl(t) is given byl(t) = ‖B(t)‖2. In ad-
dition to atoms and interatomic bonds, the numbering
scheme must be extended in order to include also cou-
ples of bonds that share a common atom. Six couples
of bonds are associated to every Y-shaped elementary
cell. Let a generic cell beY (α1, α2); then the cou-
ples are namedci(α1, α2) for i = 1, 2, . . . , 6 and are

described by the following ordered pairs of bonds:

c1(α1, α2) = (b2(α1, α2), b3(α1, α2)),

c2(α1, α2) = (b3(α1, α2), b1(α1, α2)),

c3(α1, α2) = (b1(α1, α2), b2(α1, α2)),

c4(α1, α2) = (b2(α1, α2), b3(α1, α2 − 1)),

c5(α1, α2) = (b3(α1, α2), b1(α1 − 1, α2)),

c6(α1, α2) = (b1(α1, α2), b2(α1 + 1, α2 + 1)).
(19)

Let c = (b1, b2) ∈ C be a couple of bonds that share a
common atom, then the anglepc(t) between the bonds
is given by

pc(t) =
BT

1 (t)B2(t)

l1(t) l2(t)
, (20)

whereBi and li are, respectively, the vector and the
length associated to the bondbi for i = 1, 2.

The presented numbering scheme successfully
applies also to SWCNTs, where it’s adopted accord-
ing to the constraints on the integer indices of the
generic Y-shaped elementY (α1, α2) that derive from
the surface being cylindrical instead of planar. As
a result, every single SWCNT can be denoted by
S = (A,B, C) and will show a different but regular
tiling pattern of the structure. Depending from the
curvature of the surface and the chirality of the tubule
(and also from its temperature), the length of the pa-
rameteraCC may not be the same of a graphene sheet
at rest, which is assumed to beaCC = 1.4 Å [36] in
the computational environment; the simulations can
consider also SWCNTs that aren’t already at the me-
chanical equilibrium.

3 Numerical Simulation

The behavior and the energetics of molecules are fun-
damentally quantum mechanical. However, it’s pos-
sible to successfully employ the use of classical me-
chanics with a force-field approximation: the system’s
energy is expressed only as a function of the nuclear
positions, according with the Born-Oppenheimer ap-
proximation. Being an atomistic method, every atom
that constitutes the system is modeled as a single ma-
terial particle. An appropriate potential is introduced
in order to predict the energy associated with the given
conformation of the molecule.

3.1 Empiric Potential
Let Ψ(t) be a time-dependent vector with3|A| ele-
ments that contains the positions of every atom in the

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      61



SWCNTS = (A,B, C). More formally, this molecu-
lar conformation vector can be specified as follows:

Ψ(t) = [posT
a1

(t),posT
a2

(t), . . . ,posT
an

(t)]T (21)

andA = {ai}n
i=1. Given a molecular conformation

Ψ(t), the potential functionV : R
3n → R can be

written as

V (Ψ(t)) = Vc(Ψ(t)) + Vn(Ψ(t)), (22)

whereVc(Ψ(t)) is the partial accounting for covalent
bonds andVn(Ψ(t)) for noncovalent interactions. De-
veloping further the description of the potential en-
ergy from (22), the covalent portion can be expanded
as follows

Vc(Ψ(t)) = Vb(Ψ(t)) + Va(Ψ(t)) + Vd(Ψ(t)). (23)

This representation considers the bond stretching, an-
gle bending and dihedral interactions. The noncova-
lent portion accounts for the non-bonded electrostatic
and van der Waals interactions. A rich literature in
molecular mechanics is devoted to finding the most
useful and realistic forms of these potential energy
terms. Consequently, specific functional forms can be
used for the energy terms, according to the different
materials and the most disparate loading conditions
that are considered in the simulation. For SWCNTs,
only the termVc is widely considered of interest when
small strains are applied to the molecule, while the
other term is usually negligible [37]. In such cases,
only the terms accounting for bond stretching and an-
gle variation are significant for the system potential.
Therefore, the resulting potential energy is reasonably
approximated by

V (Ψ(t)) ≃ Vb(Ψ(t)) + Va(Ψ(t)). (24)

In classical molecular mechanics, many functions
have been introduced for the formulation of the ap-
propriate potential energies. In this paper, under the
assumption of small local deformations, it’s adequate
and convenient to employ the simple harmonic ap-
proximation for angles and bonds. This constraint is
only local and doesn’t forbid the simulation of large
global deformations. Moreover, several calculations
in computational chemistry have shown that a reason-
able approximation to the potential energy of a molec-
ular system can be provided by harmonic functions
when the atoms are near to their equilibrium posi-
tions [38]. Binary bonds are modeled as springs and
their stretch is subject to Hooke’s Law. The spring
parameters are obtained from experimental data; they
are the equilibrium distanceaCC of the bond at rest
and the spring constantkl of linear elasticity [36]. The

same applies for torsion springs; their equilibrium an-
gle is 2π/3 and their spring constant iskp. When a
SWCNT is subjected to external forces, the displace-
ments of individual atoms are constrained by bond
stretching and angle bending; the global deformation
is the result of these interactions.

The stretch potential of a single bondb can be
expressed as

Vb(B(t)) =
kl

2
(l(t) − aCC)2 . (25)

Similarly, adjacent bonds tend to maintain their equi-
librium angles and, again, the bending potential for
the couplec = (b1, b2) is given by

Vc([B
T
1 (t),BT

2 (t)]T ) =
kp

2

(
arccos pc(t) −

2π

3

)2

.

(26)
The potential of the molecule with the conformation
Ψ(t) can be expressed as the summation of the term
in (25) and (26) for every bond and every couple of
adjacent bonds. The result is the global potential at
time t:

V (Ψ(t)) =
∑

b∈B

Vb(Ψ(t)) +
∑

c∈C

Vc(Ψ(t)). (27)

Since the functionarccos is not differentiable when its
argument belongs to the set{+1,−1}, it’s convenient
to replace the entire formula(arccos(x) − 2π/3) with
another functionh : [−1, 1] → R, such that

∀x ∈ [−1, 1] h(x) ≃
(

arccos(x) − 2π

3

)
. (28)

That is,h approximates its behavior but it’s differen-
tiable forx ∈ {+1,−1}.

A recognizable benefit of the above formulation
is that the potential energy of the system is separated
into individual energy terms according to their physi-
cal meaning and to the single atomic constituents. In
this context, the harmonic approximation fits the fluc-
tuation of the system around an equilibrium state and
it’s similar to the linearized theory of elasticity in con-
tinuum mechanics.

3.2 Gradient of the Scalar Potential

Let Ω be a test molecular conformation; then, at every
time t, the derivative ofV (Ψ(t)) with respect toΩ is
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given by

V ′(Ψ(t))(Ω) =
∑

b∈Bt

V ′
b (Ψ(t))(Ω)

︸ ︷︷ ︸
V ′

bond
(Ψ(t))(Ω)

+
∑

c∈Ct

V ′
c (Ψ(t))(Ω)

︸ ︷︷ ︸
V ′

angle
(Ψ(t))(Ω)

.
(29)

whose terms can be expanded as follows

V ′
bond(Ψ(t),Ω) =

∑

b∈Bt

kl(l[Ψ(t)] − aCC)·

·
BT

b[Ψ(t)]Bb[Ω]

l[Ψ(t)]
,

V ′
angle(Ψ(t),Ω) = kph(pc[Ψ(t)])Z(Ψ(t),Ω)·

· (w2(Ψ(t),Ω) − w1(Ψ(t),Ω))
(30)

and

Z(Ψ(t),Ω) =

(
B1[Ψ(t)] ∧B2[Ψ(t)]

l1[Ψ(t)]l2[Ψ(t)]

)T

. (31)

Recalling (28), the functionh : [−1, 1] → R is de-
fined as

h(x) = h(x)
dh(x)

dt
≃ −

(
acos(x) − 2π

3√
1 − x2

)
. (32)

It’s defined for allb ∈ B

wb (Ψ(t),Ω) =
Bb[Ψ(t)](t)(
l[Ψ(t)](t)

)2 ∧
(
Bb[Ω]

)
, (33)

whereBb[Ψ] is the vector related to the bond inΨ(t)
and similarly forBb[Ω].

From this significant result, it’s possible to di-
rectly calculate the gradient of the scalar potential.
More precisely, thei-th component of the gradient of
V is given by

[∇V (Ψ(t))]i = V ′(Ψ(t))(Ωi), (34)

whereΩi is thei-th vector of the cardinal basis ofR
3n.

As a result, its elements are zeros everywhere except
in its i-th position, that has unitary value.

3.3 Dynamics and Conservation

The molecular system has6n degrees of freedom:
the simulation computes the trajectory in a6n-
dimensional phase space. These degrees are repre-
sented by two3n-dimensional vectors: the confor-
mation vectorΨ(t) and the vector of the momenta

Γ(t)nma. The result is the following dynamical sys-
tem 





dΨ(t)

dt
= Γ(t)

dΓ(t)

dt
= −∇V (Ψ(t))

nma

.

(35)

When the loads are constant over time, the conserva-
tion of the total energyE is implied by the formula-
tion. In this case it can be written as

E(Ψ(t)) =∇V (Ψ(t)) −∇L(Ψ(t))+

+
ma

2

∑

a∈A

(
dposT

a (t)

dt

dposa(t)

dt

)
.

(36)
and permits the consistency check for the simulation.

Being a dynamical system with a direct evalua-
tion of the gradient, the time integration scheme is the
core of the computation. Here, the velocity-Verlet in-
tegration scheme is used to overcome the difficulty of
the coherent evaluation of the velocities in the stan-
dard Verlet scheme [39, 40, 41, 42]. Hence, the re-
sulting scheme with a steph and that accounts for the
velocity is given by






Ψ(t + h) ≃ Ψ(t) + hΓ(t) − h2∇I(Ψ(t))

2nma

,

Γ(t + h) ≃ −h
∇I(Ψ(t)) + ∇I(Ψ(t + h))

2
.

(37)
with aO(h4) local approximation both in velocity and
position and a globalO(h2) error [40].

4 Conclusions
Most of the focus in this paper has been to address the
promising mechanical attributes that are related to the
dynamical behavior of the SWCNTs. As stated in the
introduction, effort still remains to be done on the ex-
perimental measurement of the mechanical properties
of the tubules and on the applicability of the manip-
ulation techniques. Here, progress made on the theo-
retical and computational fronts has also been briefly
summarized.

The bending of CNTs is the main part of the
numerical experimentation of this work. Individ-
ual tubules and also bundles of regularly displaced
nanopipes were successfully controlled by bending
the tubules until the molecular surface eliminated the
internal volume. The consistency of the numeri-
cal method was tested with the computation of the
Young’s modulus (of the order of1 TPa, depending on
the diameter) and of the Poisson’s ratio (of about 0.19,
slightly depending on the chirality) for the tubules,
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considered as elastic beams. The computed results
have been tested against theoretical, experimental and
computational data obtained so far [43] and provide
good agreement. The continuous part can be modeled
with the Exponential Cauchy-Born Rule [13] and nu-
merically solved using computational mechanics ap-
proaches.

There are also a lot of unresolved issues in theo-
retical analysis of combined approaches that can con-
sider also the effect of realistic defects. In fact, in-
novative numerical simulation schemes are being de-
veloped. The applicability of the results largely de-
pends on a more complete improvement of the com-
putational methods.
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