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Abstract: Obtaining optimal controls for high-dimensional nonlinear dynamic systems is very important, but 
generally very difficult. Authors have developed some solvers based on classical gradient methods, which can 
automatically obtain the converged solutions by introducing a lot of expertise based on our former experiences. 
This paper shows some examples of nonlinear optimal control problems in aerospace fields and their solutions 
obtained by our program. Some key technologies introduced into the program are briefly explained. The 
program is also useful to solve differential game problems, and an application is also shown.  
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1  Introduction 

Obtaining optimal controls for high-dimensional 
nonlinear dynamic systems is very important, but 
generally very difficult. Until the 1980s several 
regular methods such as the steepest gradient 
method had been developed and employed. After 
that, direct shooting methods with mathematical 
programming, or Neural nets became very popular, 
and their presence on the market has made the 
regular methods obsolete. These new methods are 
easy to use even for beginners. However, they can 
obtain only approximate solutions without precision. 
Also, they cannot apply to high-dimensional 
complicate problems. The main reason why the old 
regular methods are obsolete is, they require the 
user’s experience and expertise to converge 
solutions.  Authors have developed some solvers 
which are based on the classical steepest ascent 
method [1], the Successive Conjugate Gradient 
Restoration Algorithm (SCGRA) [2] etc. These 
solvers can automatically obtain the converged 
solutions by introducing a lot of expertise based on 
our former experiences. Among them, the algorithm 
of one solver, the STP-CODE is employed to solve  
these example problems. In this paper, the required 
formulation for the STP-CODE is explained first. 
For readers’ convenience, the details of the 
algorithm are shown in the Appendix. In section 3,  
satellite orbit transfer problems with low thrusts are 
explained. In section 4, missile-aircraft 
pursuit-evasion problems are explained. The 
one-sided optimal control problem is extended to 
two-sided optimal control problems (differential 
games) in section 5. Some key technologies of the  

STP-CODE are explained in section 6.  
 
2  Problem Formulation 

In order to employ the STP-CODE (STeePest 
ascent CODE), the problems must be defined as 
follows. 

Find )(tu  to maximize (for minimizing, change 
the sign of the following φ ) 
 

[ ])( ftxJ φ=    (1) 
where 

),,( tuxfx =&    (2) 
00 )( xtx =  : specified  (3) 

with terminal constraints 
[ ] 0),( =ff ttxψ    (4) 

 
where )(tx  is an n -dimensional state vector, 

)(tu  is an m -dimensional control vector, and ψ  
is a q -dimensional constraint vector. The terminal 
time ft  is determined from the following stopping 
condition: 
 

[ ] 0),( =Ω ff ttx    (5) 
 

In (5), Ω can be selected from one arbitrary 
component of ψ in (4), however, it must clearly 
determine the final time ft  . Generally, it is easier 
to inflict the constraints (4) by introducing penalty 
functions rather than following the method in the 
Appendix of this paper. As for this point, an 
explanation is added in section 6. 
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3 Optimal Orbit Transfer of a 
Satellite with Low Thrusts  

Fig.1 shows the inertial coordinates and symbols. 
Fig.2 shows the satellite orbit coordinates and 
symbols. The equations of motion are given as 
follows [3],[4]. 
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where 
µ: gravity constant 398600.9 ( km3 /s2 ) 
re : mean earth equatorial radius 6378.143 km  
J2: zonal second coefficient 1082.628E-6 

fx , fy and fz are control force components, dx , 
dy , and dz  are drag force components, and k  is the 
fuel consumption coefficient, fx0  , fy 0  , and fz0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.1 Inertial coordinates and symbols 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2 Orbit coordinates and symbols 

are the thrust components of the satellite fixed 
thrusters per unit mass. By the transformation of 
coordinates shown in Figs 1 and 2, the following 
relations exist.  

 
fx = (−cΩsη − sΩcicη) fx0 + (−sΩsi) fy0  

+(−cΩcη + sΩcisη) fz0  
fy = (−sΩsη + cΩcicη) fx0 + (cΩsi) fy0  

+(−sΩcη − cΩcisη) fz0 
fz = (sicη) fx0 + (−ci) fy0 + (−sisη) f z0  (8) 

 
 In vector notation, the above variables are 
expressed as, 
 

x = (x,y,z,vx,vy ,vz,m)T    (9) 
u = ( fx0, fy0, fz0)T    (10) 

 
A general optimal orbit transfer problem is 

defined as finding the optimal control histories  u  
under the above equations to maximize the next 
performance index φ  , 
 

φ = m − (ψ −ψ f )T K(ψ −ψ f ){ }t= t f
 (11) 

 
where the elements of the terminal constraint vector 
ψ  are arbitrary functions of states, K  is an 
arbitrary penalty coefficient matrix, and t f  is the 
final time. The following constraints are also 
imposed on control variables. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig.3 Orbit variables’ histories 
(coplanar orbit) 
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− fmax ≤ fx0(t) ≤ fmax  
− fmax ≤ fy0(t) ≤ fmax  
− fmax ≤ f z0(t) ≤ fmax    (12) 
 
In order to apply the STP-CODE, the partial 

derivatives of the right side of Eqs. (6),(7) by x  
and u are required. Although the orbital parameters 
Ω,η,i  etc. are expressed as the functions of these 
variables, these derivatives are obtained, but the 
explicit expressions are too complicated and are 
abbreviated here. Some calculation results are 
explained as follows. 

Optimal orbit transfer from a 200km altitude to a 
500km altitude circular orbit with fixed thrusters of 
500N thrust is calculated. Fig.3 shows some orbit 
parameters’ histories, where a and p are the orbit 
semimajor axis and semilatus rectum, respectively. 
The initial mass of the vehicle is 8000kg. the 
performance index and terminal constraints in this 
problem are given as follows, 
 
φ = m f − kt f     (13) 
ψ = (a − af , p − pf )t f

T = (0,0)t f

T   (14) 
 

Eq. (13) means maximizing final mass 
(minimizing the fuel consumption) within less time 
(the priority is the fuel) . Only fx0  is employed 
here, and the fuel consumption is only 2.4% larger 
than the ideal Hohman transfer where the thrust 
magnitude is infinity. Figs 4 – 6 show the case 
where the orbit inclination is changed from 30deg. 
to 35deg. In this case, the following constraint is 
applied instead of (14), 
 
ψ = (a − af , p − pf ,i − i f )t f

T = (0,0,0)t f

T  (15) 
 
  The results of Figs 4 and 5 produce the same fuel 
consumption, therefore these are both the solution 
of this optimal control problem. On the other hand, 
the solution in Fig. 6 requires larger fuel 
consumption, therefore this is only a local optimum 
solution. Although the gradient methods are said to 
be not efficient for bang-bang type solutions, 
however, very crisp bang-bang type controls are 
obtained by the STP-CODE 
 
4 Fighter Evasive Maneuvers Against 
  Proportional Navigation Missile 

Perhaps this problem had been solved by authors 
and published for the first time in Aug.1983 as 
AIAA paper-83-2139. The results with some 
extended studies were published in 1986 [5]. Since 
then, the problem has attracted many researchers’ 
interests and a large amount of studies have been 
conducted until now. Fig. 7 shows the relative 
geometry of the pursuer and the evader and 

symbols. Here, the pursuer is a missile, and the 
evader is an aircraft. Both vehicles are modeled as 
point masses, and the equations of motion in a 
horizontal plane are as follows.  

 
ttt mDTv /)cos( −α=&    (16) 

)/()sin( tttt vmTL α+=ψ&    (17) 

ttt vx ψ= cos&  (18)   ttt vy ψ= sin&  (19) 
L = (1/2)ρtvt

2StCL  D = (1/2)ρtvt
2StCD  (20) 

)( 0ααα −= LL CC  2
0 LDD kCCC +=  (21) 

 
 A constraint is imposed on the value of the aircraft 
lateral acceleration ta , which is treated as the  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.4 Mass, inclination, and control histories 
( fmax =10,000N, =35deg., type 1) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 Mass, inclination, and control histories 
( fmax =10,000N, =35deg., type 2) 
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aircraft control variable.  at = L /mt ≤ at max  (22) 
The missile lateral acceleration is approximated by 
a first-order lag to a lateral acceleration command 
amc , which is treated as the missile control variable. 
The missile equations of motion are given by, 
 

)(/1 mmmm DTmv −=&  (23) τ/)( mmcm aaa −=&  (24) 
mmm va /=ψ&  (25)   mmm vx ψ= cos&  (26) 

mmm vy ψ= sin&     (27) 
where  

2
2

2
1 )/( mmmm vakvkD +=   (28) 

mDmm CSk 02
11 )( ρ=  )/(2 2

2 mmmm Smkk ρ=  (29) 
where 

⎩
⎨
⎧

<
≤<

=
ttfor

ttforT
tT

e

em
m

0
0

)(    (30) 

 
  For the PNG missile with signal saturation taken 
into consideration, mca  is given by 
 

⎪⎩

⎪
⎨
⎧

>

≤
=

maxmax

max

)( mcmccmc

mcmcce
mc

aaforasigna

aaforvN
a

σ&
 (31) 

 
In Eq.(31), eN  is the effective navigation ratio, cv   
the closing velocity, and σ&  the line-of-sight 
turning rate given by 
 

rvc &−=      (32) 
[ ))((2

1
mtmtr xxyy &&& −−=σ    (33) 

where r  is slant range, 

r = (xt − xm )2 + (yt − ym )2[ ]
1

2   (34) 
 
 Our  purpose  is  to obtain the optimal control  
histories of the aircraft that maximize the final MD 
(Miss Distance) which is the slant range at the  
CAP (Closest Approach Point). Therefore, the  
performance index φ  and the stopping condition 
Ω is given by,  
 

Ω ≡ vc = 0   (35), φ = (r)t f
   (36) 

  Typical parameters of the vehicles in our studies 
are,  
    Aircraft (afterburner) 

maxft

 
    kgmt 7500=  mht 45720 =  226mSt =  
   )9.0(/2.2900 Msmvt =  radCL /689.3=α  
    260.00224.00 == kCD   gat 9max =  
    Engine : PWF-100 ),(maxmax hvTT =  
 
    Missile (Sustainer phase) 
    kgmm 6.1730 =  sI SP 250=  NTm 6000=  
    ste 8=  20324.0 mSm =  mhm 45720 =  
    )0.2(/6.6440 Msmvm =  radCL /0.35=α  

    030.090.00 == kCD   gac 30max =  
    s5.0=τ  Ne = 4.0   
  Typical vehicle trajectories and aircraft control 
histories are shown in Fig. 8. 
This missile avoidance problem and derivation can 
be extended to multiple missile cases. For the 
purpose, the authors introduced a penalty function 
with a window function [6] as follows. 
 

n
t rrtwp )/)(( 11=&     (37) 

w(t) =
1.0 for tw1 ≤ t ≤ tw2

0 for 0 ≤ t < tw1, tw2 < t
⎧ 
⎨ 
⎩ 

  (38) 

 
where tw1  and tw 2  are selected to include the 
time of CAP  against the first missile between 
them. The following performance index is selected. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.6 Mass, inclination, and control histories 
( fmax =10,000N, =35deg., type 3) 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Vehicle geometry and symbols 

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      53



φ = {krr2
2 − krf (r2 − r2 f )2 − kp p}tf   (39) 

 
where the terminal time t f is obtained from the 
following stopping condition  
 

02 ==Ω r&     (40)  
 
which means the time of the CAP with the second 
missile. As the penalty kp p  in (39) tries to 
maximize the MD between the first missile and the 
aircraft, therefore by selecting the coefficients in 
(39) appropriately, we can make both MDs between 
two missiles as large as possible. Note that by the 
above method, we can reduce a multi-point 
boundary value problem to a two-point boundary 
value problem. 
 
5  Pursuit-Evasion Problems of Two 

Cars in an Ellipsoid Under Gravity. 
The STP-CODE is also useful to solve differential  

game problems. In former studies, the author has  
shown two methods to solve practical nonlinear 
differential game problems by employing one-sided 
nonlinear optimal control solvers. 
 (1) Start from a nominal solution, where the 
pursuer (missile) is guided by PNG (Proportional 
Navigation Guidance: a kind of quasi-optimal 
control), while the evasive target (fighter) takes 
one-sided non-linear optimal control. The solution 
is iteratively corrected to converge into a mini-max 
solution. One successful result is shown in [7]. 
 (2) Both players take their one-sided optimal 
controls, and find the tangent point of their 
reachable terminal surfaces. One successful result is 
shown in [8]. 
 In [7] and [8], missile-aircraft pursuit-evasion 
differential games are solved. Here, the author’s 
recent study, pursuit-evasion problems of two cars  
in an ellipsoid are briefly explained. In solving 
these problems, the second method above is 
employed. 
  Fig.9 shows a car in an ellipsoid and some  
symbols. The equation of the ellipsoid is given by 

R(x, y,z) ≡
x 2

d2 +
y 2

e2 +
z2

f 2 −1= 0   (41) 

By introducing subsidiary parameters u , v  
 
x = d cosucosv  y = ecosusinv  z = f sinu (42) 
 
The coordinates of p  in the plane are expressed by 
employing u , and v  
 
p(u,v) = (x(u,v), y(u,v),z(u,v))   (43) 

 
The tangential lines of u  and vdirections at p  are 
given by 
 

pu = ∂p /∂u = (xu, yu,zu)  

pv = ∂p /∂v = (xv, yv ,zv )    (44) 
 
The normal vector at p is given by ν , where 
 

ν =
pu × pv

| pu × pv |
    (45) 

 
Fig.10 shows the force balance and control 
variables of the car a  and ψ , where a  and 
Fg are the acceleration and gravity force 
components parallel to the surface. The following 
constraints are imposed on controls. 
 
0 ≤ a ≤ amax  ,  −π ≤ψ ≤ π   (46) 
 
The rotation matrix around the vectorν  is given by 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.8 A typical aircraft optimal evasive maneuver 
    (tail chase) 
 
 
 
 
 
 
 
 

Fig.9 A car in an ellipsoid 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.10 Control variables 
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ν x
2Vψ + cψ ν xν yVψ −ν xsψ ν xν zVψ + ν ysψ

ν xν yVψ + ν zsψ ν x
2Vψ + cψ ν yν zVψ −ν xsψ

ν xν zVψ −ν ysψ ν yν zVψ + ν xsψ ν z
2Vψ + cψ

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 

     (47) 
whereVψ  is 1− cψ  
By differentiating (42) two times and with some 
manipulations, we obtain 
 

)/()( 21 desudsvcecvcu +−=&&    su ≠ 0 
)/()( 21 decudcvcesvcv −−=&&    cu ≠ 0 (48) 

where 
)]2)[( 22

1 susvvucucvvuddgac xxx &&&& −++++=  

)]2)[( 22
2 sucvvucusvvuedgac yyy &&&& +++++= (49) 

 
where ax and ay  are x  and y  components of a  
obtained through rotation matrix (47). gx , gy  
and dx , dy are acceleration (deceleration) caused by 
gravity and drag, respectively. By expressing as 
 

uVu =&  ,   vVv =&    (50) 
 
the equations of motion of the car are expressed by 
four-dimensional first order simultaneous 
differential equations, and can be supplied to the 
STP-CODE. Above equations are applied to both 
evader and pursuer.  

Fig.11 shows a calculation example where an 
ellipsoid of d  =3000m, e  =1500m, and f  
=300m is selected. The initial position, velocity of  
P  and E are xp 0  = 0m,  yp 0 =-100m,  
Vp 0 =15m/s,  xe0 = 0m,  ye0 =-250m,  Ve0 =5m/s, 
and their accelerations (naturally they always 
employ their maximum values) are ap max = 2m /s2 
and ae max =1.5m /s2 , respectively. The initial 
offset angle of P is 15degrees from Y axis. Given 
an arbitrary time T, both players try to run as far as 
possible, and their reachable terminal surfaces for 
T=11s to 17s are shown. Clearly, the mini-max 
solution occurs at T=17s where the terminal surfaces 
produce a tangent point. Fig.12 shows the evader’s 
optimal trajectory and the pursuer’s nominal and 
optimal trajectories (a set of nominal control histories 
is required before starting iterations by the 
STP-CODE) . Fig.13 shows the pursuer’s nominal and 
optimal control histories. The difference of the capture 
time of the optimal and nominal controls is at most 
20ms, which is about 0.01% of the total time. That is, 
the sensitivity of the controls to the performance index 

is very small, therefore, by a recent easy method, it 
will be difficult to obtain this solution.  
 
Necessary conditions of the solution 

As the common performance index is the capture 
time, the system Hamiltonian becomes as  
 
H =1+ λT f  (50)  where T

vu VVvuf ),,,( &&&&=  (51)  
 
and λ  is the adjoint vector. 

The control vectors of both pursuer and evader 
are, 
 
up = (ψ p,ap )T   and  ue = (ψe,ae )T  (52) 
 

The  necessary (stationary) conditions for the 
mini-max solution are as follows. 
 
 
 
 
 
 
 
 
 

Fig.11 Offset angle=15deg. without drag. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.12 Optimal and nominal trajectories of vehicles 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.13 Nominal and optimal controls of the pursuer 
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∂H
∂ψ p

= 0 ,  ap = ap max   

∂H
∂ψe

= 0 ,  ae = ae max  

for 0 ≤ t ≤ t f    (53) 
 

As for symbols employed in above equations, see 
the appendix. The above characteristics are 
automatically satisfied by the nature of the steepest 
ascent algorithm. The saddle point condition (Nash 
Equilibrium) is satisfied in the result. 
 
J up

0 (t),ue (t)[ ]< J up
0 (t),ue

0(t)[ ]< J up (t),ue
0(t)[ ] 

fttfor ≤≤0    (54) 
 
where up

0 (t)  and ue
0(t) are optimal solutions of 

up  and ue , respectively. The above characteristics 
are assured by the proposed algorithm. It is also 
verified by contradiction. That is, by selecting 
arbitrary differential changes from the optimal 
control of one vehicle and calculating 
corresponding one-sided optimal control of the 
opponent vehicle and conducting simulations. 
 
6  Some Techniques for Automatic 

Convergence in STP-CODE  
There are a lot of expertise and experiences   

introduced in the STP-CODE. Some of the 
techniques are explained here. 

At first, some facts known to us by former 
experiences are stated. 
(1) The characteristics of convergence (COC) do 
not depend on the number of states, and complexity 
of systems. COC depends on the number of controls 
and time steps. With up to three controls and up to 
200 time steps, we usually could obtain the solution 
easily, but if the numbers increase farther, COC 
severely degrades.  
(2) It is easier to introduce constraints to the 
performance index by penalty functions, than to 
treat them by the formal method written in the 
Appendix. In order to simultaneously select 
appropriate penalty coefficients, a special technique 
is employed, which is explained later.  

The key techniques of the steepest ascent 
algorithm is the proper choice of the value 
dp which appeares in (A-22), which must be 
changed every step, and how to avoid dropping into 
local optima, and to reach the global optimum. 
Some features of the STP-CODE are, 
(1) The program is written in FORTRAN. 

(2) Not only is the suitable dp automatically 
selected, but also the convergence procedure is 
accelerated.  
(3) An algorithm is introduced to automatically 
avoid dropping into local optima, and to reach the 
global optimum. 
(4) In order to satisfy constraints by penalty 
functions, very large values must be selected, 
however, this often causes the solution to drop into 
local optima and further iteration is stopped. In the 
case, the constraints are relaxed and the penalty  
coefficients are decreased. After the iteration is 
recovered, then the penalty coefficients are 
gradually increased again. 

The processes (3) and (4) can not be 
implemented by only the FORTRAN program itself. 
They require the help of JCL (Job Control 
Language). The JCL reserves many applicant 
solutions and finally selects the best solution among 
them. 
 
7 Conclusion 

The STP-CODE is a program developed by the 
authors, which is based on the classical steepest 
ascent method. Although the algorithm is a very old 
one, it can obtain the converged solutions 
automatically by introducing a lot of expertise 
based on our former experiences. Some examples 
of nonlinear optimal control problems in aerospace 
fields and their solutions are shown and explained. 
Some key technologies introduced into the program 
are briefly explained. The program is also useful to 
solve differential game problems, and an 
application is also shown, which would be difficult 
to solve by a current easy method on the market. 
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Appendix 
  A steepest ascent method is a well-known 
algorithm to solve nonlinear optimal control 
problems. A summary of the algorithm is shown 
here for the readers’ convenience. 
  Find )(tu  to maximize (for minimizing, change 
the sign of the following φ ) 
 

[ ])( ftxJ φ=        (A-1) 
where 

),,( tuxfx =&        (A-2) 
00 )( xtx =  : specified      (A-3) 

with terminal constraints 
[ ] 0),( =ff ttxψ        (A-4) 

 
where )(tx  is an n -dimensional state vector, 

)(tu  is an m -dimensional control vector, and ψ  
is a q -dimensional constraint vector. The terminal 
time ft  is determined from the following stopping 
condition:  

[ ] 0),( =Ω ff ttx        (A-5) 
 
  The optimal control )(tu  is obtained by the 
following algorithm. 
1) Estimate a set of control variable histories )(tu  

(which is called a nominal control) 
2) Integrate the system equations (A-2) with the 

initial condition (A-3) and control variable 
histories from step 1 until (A-5) is satisfied. 
Record )(tx , )(tu , and [ ])( ftxψ . Calculate the 
time histories of the )( nn×  and ( mn × ) matrices 
of functions: 

u
f

tG
x
f

tF
∂
∂

=
∂
∂

= )()(        (A-6) 
 

3) Determine n -vector influence functions )(tφλ , 
)(tΩλ  and ( qn × ) matrix of influence functions 
)(tψλ , by backward integration of the following 

influence equations, using )( ftx  obtained in 
Step 2 to determine the boundary conditions:  

x
fT

∂
∂

−= φφ λλ&  (A-7)  
tf

f
T

x
t ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=
φλφ )(     (A-8) 

x
fT

∂
∂

−= ΩΩ λλ&  (A-9) 
tf

f
T

x
t ⎟

⎠
⎞

⎜
⎝
⎛

∂
Ω∂

=Ω )(λ    (A-10) 

x
fTT

∂
∂

−= ψψ λλ& (A-11) 
tf

f
T

x
t ⎟

⎠
⎞

⎜
⎝
⎛

∂
∂

=
ψλψ )(   (A-12) 

 
Calculate the following influence functions 

ΩΩ
Ω

−= λ
φ

λλ φφ
)(
)(

f

f

t
t

&

&
       (A-13) 

ψψψ λ
ψ

λλ
)(
)(

f

f

t
t

Ω
−=Ω &

&
       (A-14) 

4) Simultaneously with Step 3 ,compute the 
following integrals:  

dtGWGI T
tf

t

T
Ω

−
Ω∫= ψψψψ λλ 1

0
      (A-15) 

dtGGWI T
tf

t

T
Ω

−
Ω∫= φψψφ λλ 1

0
      (A-16) 

dtGGWI T
tf

t

T
Ω

−
Ω∫= φφφφ λλ 1

0
      (A-17) 

 
5) Choose values of ψδ  to cause the next solution 

to be closer to the desired values [ ] 0)( =ftxψ . 
For example, one might choose  

[ ] 10,)( ≤<−= εψεψδ ftx       (A-18) 
 
The proper choice of )(tuδ , which increases the 
performance index J  is given as follows:  

)()2/1()( 1 vGWtu T
ΩΩ

− −= ψφ λλµδ       (A-19) 
where  

2
1

12

1

)(
2

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−

−
=

−

−

ψψ
µ

ψψ

ψφψψψφφφ

dIddp

IIII
T

T
      (A-20) 

ψφψψψψ ψµ IIdIv 112 −− +−=       (A-21) 
 
where dp  and ( mm × ) matrix of weighting 
functions )(tW  are chosen to satisfy 
 

∫=
tf

t

T dttutWtudp
0

2 )()()()( δδ       (A-22) 
 
6) Repeat Steps 1-5, using an improved estimate of 

)(tu   where  
)()()( tututu old δ+=        (A-23) 
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