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Abstract: The resultant is an algebraic expression, computable in a finite number of arithmetic operations from the coefficients
of two univariate polynomials, that vanishes if, and only if, the two polynomials have common zeros. The paper considers
formal resultant for degree-deficient polynomials (polynomials whose actual degree is lower than their assumed degree).
Some key properties of the resultant are extended to formal resultants including its expression by the finite zeros of the
polynomials.
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1 Introduction
The resultant is an algebraic concept that arises in seek-
ing conditions for two univariate polynomials to have com-
mon zeros. It plays a role in determining co-primeness of
also more than two (univariate, multivariate, matrix) poly-
nomials, determining zero location of polynomials in the
complex plane for testing and controlling stability of linear
systems, and in more applications. The basic problem can
be stated as follows. Let F be an arbitrary field, and let

a(z) = amzm + am−1z
m−1 + · · ·+ a0

b(z) = bnzn + bn−1z
n−1 + · · ·+ b0

(1)

be two general polynomials of degree m and n in F[z].
Find necessary and sufficient conditions for a(z) and b(z)
to have common zeros. The answer to this problem is that
there exists a multivariate polynomial denoted by R (a, b)
whose variables are the coefficients ai, i = 0, . . . ,m and
bj , j = 0, . . . , n, such that a(z) and b(z) have a common
zero if, and only if, R (a, b) = 0. This function is called
the resultant of a(z) and b(z).

There are several ways to present the resultant of two
polynomials. The most commonly used presentations re-
late R (a, b) to the determinant of certain resultant matri-
ces formed from the polynomial coefficients. These expres-
sions were introduced by Euler (1748) and Bézout (1764)
and further considered in 19th century works by Jacobi,
Sylvester and Cauchy (for an excellent introduction and
background for the topic with also a careful report of his-
torical perspective see [1]). The term resultant apparently
comes from Bézout’s celebrated paper on elimination the-
ory [2]. He considered there ways to construct the R (a, b)

as the determinant of matrices of size n + m following Eu-
ler as well as the determinant of an abridged matrix of size
max(m,n) that is called today the Bézoutian matrix (as it
was called already by Sylvester [3]). Euler constructed for
a pair of polynomials a(z) and b(z) (1) a matrix of size
(n + m),

Syl(a, b) =



amam−1 . . . a0

amam−1 . . . a0

. . .

amam−1 . . . a0

bnbn−1 . . . b0

bnbn−1 . . . b0

. . .

bnbn−1 . . . b0




n rows


m rows

(2)

(all blank spaces must be filled with zeros), now called the
Sylvester matrix . It can be shown that for two full degree
non-zero a(z), b(z) ∈ F[z] det Syl(a, b) = 0 if, and only if,
a(z) and b(z) have common zeros, see e.g. [5] or [1]. Thus
det Syl(a, b) qualifies as an expression for R (a, b). Some
mathematical texts take det Syl(a, b) as the definition for
the resultant of a(z) and b(z)

R (a, b) = det Syl(a, b) (3)

There exists for a(z) and b(z) in (1) a field K (K ⊇ F)
such that a(z) and b(z) can be factored into linear terms
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over K

a(z) = am

m∏
i=1

(z − αi) (4)

b(z) = bn

n∏
i=1

(z − βi) (5)

where {αi}m
i=1 ∈ K and {βi}n

i=1 ∈ K are zeros of a(z)
and b(z), respectively. This is known as the fundamental
theorem of algebra. An alternative presentation for The
resultant is its expression by the zeros of a(z) or b(z).

Theorem 1. Let a(z) and b(z) be two polynomials (1) of
full degree (am 6= 0 and bn 6= 0) in F[z] with factoriza-
tion into their zeros as in (4) and (5). Then the resultant
R (a, b), defined by (2)-(3), may be expressed as a function
of the zeros of a(z) or b(z)

R (a, b) = an
m

m∏
i=1

b(αi) (6)

R (a, b) = (−1)mnbm
n

n∏
i=1

a(βi) (7)

For a proof for the above theorem see e.g. [4] or [5].
Combining (6) with (5), gives a third expression for the
resultant that uses the zeros of both polynomials.
Addendum. The resultant R (a, b) of a(z) and b(z) with
zeros (4) and (5) can be expressed by

R (a, b) = an
mbm

n

m∏
i=1

n∏
j=1

(αi − βj) (8)

Some texts use (8) as definition for the resultant R (a, b)
for a(z) and b(z).

The expression of the resultant by the determinant of
the Sylvester matrix provides a useful algebraic tool to de-
termine whether two polynomials have common zeros be-
cause it is computable from the coefficients of the poly-
nomials in a finite number of arithmetic operations. The
expression of the resultant by the zeros of the polynomi-
als does not seem to serve a similarly useful purpose. The
expressions (6)-(8) make transparent the capacity of the re-
sultant to detect common zeros. However, if the zeros of
both a(z) and b(z) that participate in (8) are known, the
common zeros can be determined by inspection. Similarly,
when the zeros of one of the two polynomials are known,
the expressions(6) and (7) do a straightforward detection of
common zeros - evaluation of the other polynomial at the
known zeros. On the other hand, these expressions make
most transparent the ability of the resultant to detect com-
mon zeros. They become instrumental at various stages in
developing and proving properties of algorithms associated
with the resultant. Furthermore, if (2)-(3) is taken as the
definition forR (a, b) (as many textbooks do) then showing

that it is equal to one of the expressions (6) (7) or (8) proves
that (2)-(3) indeed functions as detector for common zeros
for the two polynomials. We shall apply later the latter ar-
gument to establish the resultant for also degree-deficient
polynomials.

The resultant can also be expressed as the determinant
of the above mentioned Bezoutian matrix. The Bezoutian
and the Sylvester matrix have each its own advantage for
various algebraic tasks. The advantage of the Bezoutian
matrix for some algebraic tasks stems from its having the
minimal matrix size for posing the relevant algebraic con-
ditions. The size reduction from the double sized Sylvester
matrix is achieved by elimination of the structural zeros in
the Sylvester matrix. But, as a consequence, the matrix en-
tries of the Bezoutian are no longer the coefficients of the
two polynomials. The fact that the coefficients of the poly-
nomials appear in the Sylvester matrix directly renders it
more useful for some other tasks including the derivations
in this paper. Thus, we focus on the Sylvester matrix. Ob-
viously, properties established for the determinant of the
Sylvester matrix hold also for the determinant of a (prop-
erly set) corresponding Bezoutian matrix.

Resultants and Bezoutian play an important role in de-
termining whether the zeros of a polynomial are in cer-
tain regions of the complex plane. For example stability of
continuous-time and discrete-time linear systems require a
polynomial to have zeros in the left-half of the complex
plane and in a unit-circle centered at the origin, respec-
tively. In such problems, the tested polynomial is paired
with a second polynomial whose zeros are the reflection of
the zeros of the polynomial with respect to the boundary
of the desirable domain [6]. The zero location problems
extends the stability conditions into asking the distribution
of the polynomial zeros with respect to the respective dis-
tinguished boundary. In fact the main result in this paper
stems from a need that arose in our study on the extension
of the zero location with respect to the unit-circle method
in [7] into an integer-arithmetic algorithm (the paper under
preparation will employ the results established here). It is
apparent from [7] that the method there constructs for the
tested polynomial a sequence of polynomials of decreas-
ing degrees that at times may have vanishing leading co-
efficients. The situation needed resultants for degree defi-
cient polynomials and mobility between its expression by
det Syl(a, b) and by the expressions in Theorem 1. It is
noteworthy that the problem in this paper is presented and
solved regardless of our initial motivation and without re-
striction to the specific form of polynomial in our intended
immediate application.

The paper considers R (a, b) for polynomials whose
degrees are formally m and n given as in (1) but their
highest non-vanishing coefficient is lower then their formal
leading coefficient. Note that the expressions for the resul-
tant in Theorem 1 is restricted to full degree polynomials. It
needs am 6= 0 and the n zeros of b(z) or bn 6= 0 and the m
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zeros of a(z). In difference, the expression det Syl(a, b)
seems to be more tolerant to degree-deficient polynomi-
als. It will become apparent from our main result that
det Syl(a, b) still functions well as a common zeros detec-
tor as long as only one of the polynomials has zero leading
coefficient. The complementary situation of am = bn = 0
obviously implies det Syl(a, b) = 0. It is possible to regard
this situation as detection of common zeros at infinity, and
then claim that “ det Syl(a, b) = 0 if, and only if, a(z) and
b(z) have common zeros” holds equally for both full and
degree deficient polynomials.

In this paper we extend Theorem 1 to degree-deficient
polynomials. Namely, we obtain exact relations between
det Syl(a, b) and the finite zeros of a(z) or b(z) for any
difference between the formal and the actual degree of the
two polynomials. If (2)-(3) is taken as a formal definition
for the resultant for also degree deficient polynomials then
our derivation provides in addition a constructive proof that
det Syl(a, b) detects common zeros for also degree defi-
cient polynomials.

2 Degree-deficient polynomials

Let F be an arbitrary field, and let

a(z) = amzm + am−1z
m−1 + · · ·+ a0

be a polynomial in F[z]. We shall not exclude the pos-
sibility that am = 0, that is, that the degree of a(z) is
actually lower than m. If the polynomial a(z) is writ-
ten in the above form beginning with a possibly vanishing
term amzm, then m is called the formal degree of a(z)
and am is the formal leading coefficient. If the formal
leading coefficient is different from zero, then the poly-
nomial is said to be of full degree. If, on the other hand,
am = am−1 = · · · = am−λa+1 = 0 and am−λa

6= 0,
then a(z) is said to be degree-deficient and λa is the degree
deficiency of a(z). Clearly, λa = fdeg a − deg a, where
fdeg a is the formal degree and deg a is the nominal degree
of a(z).

Theorem 1 provides relationship between the resul-
tant and zeros of a(z) and b(z) with restriction to full de-
gree polynomials. Assume that the resultant is defined by
Eqs. (2)-(3) for also degree-deficient a(z) and b(z), in the
following we state and prove extensions expressions to (6),
(7) and (8) for polynomials with any difference between
their formal and actual degrees.

Theorem 2. Let a(z) and b(z) be two polynomials in F[z]
with degree deficiency of λa ≥ 0 and λb ≥ 0 respectively,
and let K be a field (K ⊇ F) such that a(z) and b(z) can

be factored into linear terms over K

a(z) = am−λa

m−λa∏
i=1

(z − αi) (9)

b(z) = bn−λb

n−λb∏
i=1

(z − βi) (10)

where {αi}m−λa

i=1 ∈ K and {βi}n−λb

i=1 ∈ K are zeros of a(z)

and b(z) respectively.

Then the resultant defined by Eqs. (2)-(3) may be expressed

as a function of zeros of a(z) and b(z) as

R (a, b)= (−1)nλaaλb
m bλa

n a
n−λb
m−λa

m−λaY
i=1

b(αi) (11)

R (a, b)= (−1)nλa+(m−λa)(n−λb)aλb
m bλa

n bm−λa
n−λb

n−λbY
i=1

a(βi) (12)

Proof. Denote by â(z) and b̂(z) the polynomials a(z) and

b(z) with respect to their nominal degrees. The resultant

R
(
â, b̂

)
is equal to the determinant of the corresponding

Sylvester matrix of size (m− λa + n− λb)

Syl(â, b̂)=

0
BBBBBBBBBBBBBBBBB@

am−λaam−λa−1 . . . a0

am−λaam−λa−1 . . . a0

. . .

am−λaam−λa−1 . . . a0

bn−λbbn−λb−1 . . . b0

bn−λbbn−λb−1 . . . b0

. . .

bn−λbbn−λb−1 . . . b0

1
CCCCCCCCCCCCCCCCCA

9>>>>>=
>>>>>;

n− λb rows

9>>>>>=
>>>>>;

m− λa rows

(13)

By applying Theorem 1 to â(z) and b̂(z) we have

R
(
â, b̂

)
= an−λb

m−λa

m−λa∏
i=1

b(αi)

R
(
â, b̂

)
= (−1)(m−λa)(n−λb)bm−λa

n−λb

n−λb∏
i=1

a(βi)

Thus, by comparing these equations to Eqs. (11)-(12), we

must show that

det Syl(a, b) = (−1)nλaaλb
m bλa

n det Syl(â, b̂) (14)

For simplicity of the following, we specify submatrices of

Syl(a, b) by participating columns and rows as follows.

Syl(a, b) ≡ Sa, b(1 : m + n, 1 : m + n)
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We consider four cases:

Case 1: λa = 0, λb > 0

In this case we must show that det Syl(a, b) =

aλb
m det Syl(â, b̂). Since each submatrix

Sa, b(k : m + n, k : m + n) for 1 ≤ k ≤ λb has only one

non zero element in the first column (Sa, b(k, k) = am),

then by successive expansion of the determinant

det Syl(a, b) along the first column of each submatrix we

obtain

det Sa, b(1 : m + n, 1 : m + n)

= am det Sa, b(2 : m + n, 2 : m + n)

. . .

= aλb
m det Sa, b(λb + 1 : m + n, λb + 1 : m + n)

= aλb
m det Syl(â, b̂)

Case 2: λa > 0, λb = 0

In this case we must show that det Syl(a, b) =

(−1)nλabλa
n det Syl(â, b̂). Since each submatrix

Sa, b([1 : n, n + k : m + n], k : m + n) for 1 ≤ k ≤ λb

has only one non zero element in the first column

(Sa, b(n+ k, k) = bn), then by successive expansion of the

determinant det Syl(a, b) along the first column of each

submatrix we obtain

det Sa, b(1 : m + n, 1 : m + n)

= (−1)n+2bn det Sa, b([1:n, n + 2:m + n], 2:m + n)

. . .

=[(−1)n+2bn]λadet Sa, b([1:n, n + 1 + λa :m + n], λa + 1:m + n)

= (−1)nλabλa
n det Syl(â, b̂)

Case 3: λa > 0, λb > 0

Since am = bn = 0, the resultant must be zero.

det Syl(a, b) = (−1)nλa0λb0λa det Syl(â, b̂) = 0

Case 4: λa = 0, λb = 0

Since â(z) = a(z) and b̂(z) = b(z), we must have

Syl(a, b) = Syl(â, b̂)

det Syl(a, b) = (−1)nλaa0
mb0

n det Syl(â, b̂) = det Syl(â, b̂)

The next property extends to formal resultants the
property stated as addendum to Theorem 1 .

Property 1. Let a(z), b(z) ∈ F[z] with fdeg a = m,

fdeg b = n, then

R (a, b)=(−1)nλaaλb
m bλa

n a
n−λb
m−λa

bm−λa
n−λb

m−λaY
i=1

n−λbY
j=1

(αi − βj)

(15)

Proof. By evaluating Eq. (10) at z = αi we obtain

b(αi) = bn−λb

n−λb∏
j=1

(αi − βj)

Substituting b(αi) into (11) gives

R (a, b) = (−1)nλaaλb
m bλa

n a
n−λb
m−λa

m−λaY
i=1

bn−λb

n−λbY
j=1

(αi − βj)

= (−1)nλaaλb
m bλa

n a
n−λb
m−λa

bm−λa
n−λb

m−λaY
i=1

n−λbY
j=1

(αi − βj)

The expressions (9), (10) and (15) are the extension to
degree-deficient polynomials of the expressions (6) (7) and
(8), respectively. Also note that regarding (2)-(3) as the
definition of the resultant for also degree-deficient polyno-
mials, the next corollary has been proved.
Corollary. Let a(z) and b(z) be two polynomials in F[z]
with degree deficiency of λa ≥ 0 and λb ≥ 0 respectively,
thenR (b, a) = 0 if, and only if, a(z) and b(z) have at least
one common finite zero or are both degree-deficient.

Here are two other useful properties of the formal re-
sultant. They look like known corresponding properties of
full degree polynomials resultant.

Property 2. Let a(z), b(z) ∈ F[z] with fdeg a = m,
fdeg b = n, then

R (b, a) = (−1)mnR (a, b)

Proof. Evaluating (15) with a and b reversed gives

R (b, a) = (−1)mλbaλb
m bλa

n a
n−λb
m−λa

bm−λa
n−λb

m−λaY
i=1

n−λbY
j=1

(βj − αi)

=(−1)mλb+(n−λb)(m−λa)aλb
m bλa

n a
n−λb
m−λa

bm−λa
n−λb

m−λaY
i=1

n−λbY
j=1

(αi − βj)

=(−1)nλa+mnaλb
m bλa

n a
n−λb
m−λa

bm−λa
n−λb

m−λaY
i=1

n−λbY
j=1

(αi − βj)

=(−1)mnR (a, b)

Property 3. Let K1,K2 ∈ F and a(z), b(z) ∈ F[z] with
fdeg a = m, fdeg b = n, then

R (K1a,K2b) = Kn
1 Km

2 R (a, b)
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Proof. Follows immediately by direct substitution into (2)
and taking K1 and K2 out of determinant or by straightfor-
ward evaluation of (11).

3 Conclusion
The paper considered the determinant of the Sylvester ma-
trix (the resultant) for degree-deficient polynomials. Ex-
act relations between this definition for the formal resultant
and the finite zeros of one of the polynomials or both were
derived. These relations also led to the conclusion that the
formal resultant vanishes if, and only if, the two polynomi-
als have common zeros or are both degree-deficient.
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