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Abstract:  - In this paper two common methods for nonlinear principal component analysis are com-

pared. These two methods are Auto-associative Neural Network (AANN) and Kernel PCA (KPCA). The 
performance of these methods in sensor data validation are discussed, finally a methodology which takes 
advantage of both of these methods is presented. The result is a unique approach to nonlinear component 
mapping of a given set of data obtained from a nonlinear quasi-static system. This method is finally 
compared with AANN and KPCA for sensor data validation and shows a better performance in terms of 
predicting/reconstructing the missing or corrupted channels of data. 
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1. Introduction  
Principal component analysis (PCA) is a 

mathematical technique that is used for compres-
sion of linearly correlated data. Introduced by 
Pearson [1] in 1901 and individually developed by 
Hotteling [2] in 1933, this technique finds the di-
rections with maximum variance in n-dimensional 
set of data, and transforms the data into new coor-
dinate which is a set of “n” orthonormal vector 
that have the maximum variance. When trans-
formed, the directions with least variance which 
are called as noise directions are eliminated and 
the remaining dimensions contain the maximum 
information of original data with minimum possi-
ble dimension.  

Because of the capability of compression of 
data, this PCA is very common in data processing 
methods. It is also widely been used for noise fil-
tering and data validation in linear systems. PCA 
based data-driven fault diagnosis method, which 
only depends on the input and output data of the 
monitored process, have found broad applications 
since 1990’s, especially in process industry [3-6]. 
The core basis of all these methods is that the data 
obtained from sensors is initially compressed and 
subsequently uncompressed or de-mapped into the 
original set of data. Since PCA is a linear tech-
nique its performance in sensor fault diagnosis is 

acceptable as long as we have adequate co-
linearity between different sensor readings. But, 
most real systems do not satisfy this property. 
Therefore, we need to find an alternative nonlinear 
method.  

Nonlinear principal component analysis was 
introduced by Kramer in 1991 [7]. He used a spe-
cific architecture of neural network to train a unity 
network. The architecture of an Autoassociative 
neural network (AANN) is shown in Figure1.  
AANN is a five layer feed forward neural network 
where the second and forth layers incorporate 
nonlinear transfer functions while the third layer 
as well as the output layer have linear transfer 
function. In this architecture the third layer has the 
least number of neurons. In principle this network 
provides and identity map [7]; i.e. output of the 
network is the same as its input. A key element in 
the operation of the network is the fact that it finds 
the nonlinear correlation between different chan-
nels of input.  

This is accomplished mainly via the so called 
bottleneck layer which has fewer nodes than the 
input and output layers. This layer in effect acts 
like a feature detector. In other word the original 
data are nonlinearly mapped into fewer dimen-
sions than their original form and subsequently de-
mapped to their original form. Therefore we can 
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expect that the data in the reduced dimension sec-
tion act as a nonlinear principal component of the 
original data. The nonlinear relation for the first 
principal component is as follows.  
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where  are the elements of the weight 
matrix of the kth layer in the neural network, x is 
the vector of inputs with dimension of n, p is the 
number of neurons in the mapping layer and σ is 
the activation function of the relevant neuron.  
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Figure 1 - Architecture of Autoassociative Neural 
Network 

 
Several successful applications of AANN in 

sensor fault diagnosis have been presented since 
its birth in 1991. Hines, et al used AANN for sen-
sor data validation in nuclear power plant [8].  
Mattern, et al Applied this method for turbofan 
engine [9]. Antory, et al. have used this method 
for industrial process monitoring [10]. In spite of 
these, there are several difficulties in using AANN 
for sensor data validation. First of all, like any 
other neural networks, we need to find the mini-
mum number of adjustable parameters in the net-
work that can model our function within a certain 
error. This job is much more challenging in 
AANN because we have a large network of five 
layers.  Another problem is to find the best archi-
tecture of the neural network.  Kramer [7] in his 
introductory paper on AANN has presented some 
upper limits for the number of neurons in each 
layer but in reviewing the application of AANNs 
in different areas, it is evident that the best archi-
tecture usually has far less parameters (neurons) 

than the proposed “upper limit” by Kramer. [11-
13] 

This problem is even more considerable when 
it comes to the number of neurons in bottleneck. 
In fact, the number of neurons in bottleneck is the 
number of principal components and can be ex-
pressed as the number of independent variables in 
the observed parameters. Therefore selecting more 
neurons for the bottleneck than the number of in-
dependent parameters questions the rationality of 
using principal components. In next part a method 
for finding the size of bottleneck in AANN is pre-
sented. 

The second problem is that there is no spe-
cific training methodology for AANN. All of the 
studied papers in the literature have used the regu-
lar backpropagation algorithm for training. Having 
a neural network with 5 layers at least two of 
which have nonlinear transfer functions makes it 
very difficult to train network. In fact training the 
network is an optimization problem with a very 
complicated and nonlinear objective function. 
With the real observed variables which usually are 
noisy, objective functions have multiple local 
minimums around the minimum. This problem 
limits the application of AANNs for sensor fault 
diagnosis to a very narrow category of systems 
which have simple forms of nonlinear correlation.  

Mapping function F(x) De-mapping function G(x) 

Bottleneck 
layer 

Mapping 
layer 

De-Mapping 
layer 

Output layerInput layer 

The most important problem with AANNs is 
that there is no unique solution for the trained 
network. In other words each time we train the 
network with different initial conditions, we get 
different final weights for the network. Therefore 
we have different sets of nonlinear principal com-
ponents. Apparently some of these mappings have 
better performance of fault detection than others. 
Therefore, the immediate question is that how 
should we train the network to perform well in 
sensor fault diagnosis. This problem is also ad-
dressed in this paper in the next section.  

2. Kernel Principal Component Analysis 
Method of Kernel Principal Component 

Analysis (KPCA) is introduced by Scholkopf et al 
[14] in 1998. The simplicity of method and its ra-
tional mathematical base has made this method 
very favorable. Numerous applications of this 
method have been presented Sine its publication, 
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especially in pattern recognition [15-20], but few 
of them are in sensor data validation [21],[22]. 

In this method, Instead of solving principal 
components in original space, x, we find the prin-
cipal component of a nonlinear transformation of 
this space where usually have higher 
dimension than x and even can have infinite di-
mension. But as we will see, we never need to do 
any calculation in this high dimensional space.  

)(xΦ )(xΦ

Assuming the mapping data are centered 
i.e.  , we can write the covariance 
matrix:  
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where M is number of observed samples. In order 
to find the principal values we need to find the ei-
genvalues and eigenvectors of covariance matrix: 

 
CVV =λ                                                             (3) 

  
Knowing the fact that all solutions of V lie in the 
span of [10]. We can write the 
vector V as follow:  

)(),...,( 1 Mxx ΦΦ

 

))((
1
∑
=

Φ=
M

i
iiV xα                                                (4) 

 
Solving this equation lead to the following 

Eigenvalue problem  
 

αα KM =λ                                                           (5) 
 
where K is called kernel matrix and is defined 

as following  
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and is the vector of α iα  which are coeffi-

cients of eigenvectors used in equation 4. 
After normalizing the eigenvectors, in order to 
find the principal components we have to project 
the data into the normalized eigenvectors. There-
fore, the kth principal value is     
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One interesting characteristic of Kernel PCA is 
that we never need to calculate the nonlinear map-
pingΦ . In fact, we are always dealing with the dot 
product of two mapping function. Therefore, In-
stead of selecting functionΦ , we can select a ker-
nel function in the following form  

 
)()(),( jijik xxxx Φ⋅Φ=                                    (8)  

RRk n →:                                                   
 

In other word, the dimension of nonlinear transfer 
function can be infinitely large because we never 
actually work in that space.  

Several kernel functions are discussed by 
Boser et al. [23] and Vapnic et al. [24], but the 
most kernel function used in KPCA applications is 
Radial Basis Function defied as  
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The proposed method of sensor fault diagno-
sis with KPCA is to find the principal components 
of observed data using a specific kernel function, 
then, find inverse transform of these principal 
components back to the original space.  

 
This process, however, has some shortcom-

ings. First of all we need to know what is the best 
kernel function for this and what are the parame-
ters of that function for example if we select Ra-
dial Basis Function, defined in equation 12, The 
value of σ is important as well.  

Also, size of kernel matrix is square of the 
number of observed variables. Therefore, with 
high number of training variables, we have a big 
kernel matrix and very high volume of calcula-
tions.  

Another problem is that using KPCA in this 
form is in fact a “lazy” method in which we are 
using all of the training data during the online 
classification of data. Evidently, these types of 
algorithms take a lot of processing time and mem-
ory space and with a high volume of training data 
this method fails in performance.  
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3. Sensor Fault Diagnosis with Kernel 
PCA 
If we find the nonlinear principal components 

of the data, with KPCA algorithm, we can train a 
simple network to map the data to the found prin-
cipal components. It is also very simple to train 
another network to reconstruct the original data 
out of the principal values. Using these two net-
works serially works like an Autoassociative Neu-
ral Network but the difference is that we have a 
predefined mapping function which is found based 
on a rational logic. Figure 2 shows this procedure. 

Using KPCA can also help in finding the 
number of independent variables or the number of 
neurons in the bottleneck layer of AANN, because 
the number of principal components is actually the 
number of independent valuables. Therefore, this 
method can be used as a supporting method for 
AANN. This procedure is explained in the next 
section as an example. Another indirect appliance 
of KPCA is to use the number of principal com-
ponents found in this algorithm as the number of 
neurons in bottleneck layer in AANN.  In other 
word before we apply AANN, we have an insight 
about the number of independent variables in the 
training dataset.  

 

Figure 2- Schematic diagram of sensor fault diagnosis 
using KPCA 

 
Table 1 compares briefly the two methods of 

AANN and KPCA. Phrases in the shaded table 
cells are disadvantages of the method  

 

Table 1 Comparison of KPCA and AANN  
Kernel Principal component Autoassociative Neural Net-
Analysis work  

The algorith We have to assume the number   m gives the number 
of principal components  of principal components  

The training is a simple lin The training needs nonlinear ear 
procedure  optimization   

principal components are 
unique Non unique solution 

Mapping function is limited to 
the selected kernel function  

Capable of wide category of 
mapping functions 

Slow algorithm with large 
number of observations 

No problem with large number 
of observations  

The training data is not needed Lazy algorithm when trained 

4. Application of Method in a Sample 
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Where  are measurements and  and 

a endent o
da

Problem 
In order to
y, a sample problem is solved using AANN 

and KPCA. In this problem we assume that we 
have five measurements which are functions of 
two independent variables. Defined as follows:  

⎧ ++= 1211 ettx

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

KPCA 
mxxxx ,...,,, 321  

nm×X  

lyyyy ,...,,, 321

 lm×Y  
nm×X  

lm×Y  nm×X  

lm×Y  
nm×X  

NN1 

NN2 

NN1 NN2 nm×X̂

b

b

c

d

51,..., xx 1t

2t  re indep  variables. In order to pr vide 
ta for this problem, 100 random numbers in the 

range ]2/,0[ π  were generated. Values of 51,...,ee  
are nor  Gaussian random numbers with the 
mean of zero and standard deviation defined as 
follows 

 

malized
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where  

 

In order to find the best architecture of 
AAN

 

N, 16 different architectures has been tested, 
and for each one process of training has been done 
25 times. The algorithm of training is Backpropa-
gation with Levenberg-Marquardt optimization 

Range( )Min()Max() iii xxx = −
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algorithm. Two category of architecture are in 
format of 5-J-2-J-5 and 5-J-3-J-5 for the values of 
J from 4 to 12  

Minimum training error is shown in figure 3. 
As y

of net-
wor

=
=

   ,             

After generation of the correct values of all 5 sen-

ou see for values of J>7 the amount of train-
ing error does not change considerably with fur-
ther increasing of the number of neurons. There-
fore, the number of neurons in the second and 
forth layer is selected as 7 for both cases.   

In order to compare the performance 
ks with different size of bottleneck, it is tested 

with 2 and 3 neurons in the bottleneck. The input 
values are generated with the following values of 

1t  and 2t  
tt

)cos(2

1

tt
[ ]1,0∈t

sors, one of them is corrupted by in different re-
gions in order to check the ability of the AANN to 
reconstruct the faulty data.  
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Figure 3 -Value of training error for different structures  

he results are shown in Figure 5 and 6 which 
are t

 
T
he responses of a 5-7-3-7-5 and 5-7-2-7-5 net-

work respectively. Comparing these two figures, 
we see that although the network with 3 neurons 
in the bottleneck has less training error -see figure 
4-, it has less ability to reconstruct error in the 
channels. It is also noticeable that in the process of 
reconstruction for the network with 3 neurons in 
the bottleneck, the values of other channels are 
also more deviated which is unfavorable and 

might mislead us to detection of different sensor 
as the faulty sensor.  
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Figure 4 –Sensor value before and after the neural 
network in for a 5-7-3-7-5 network 
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Figure 6 –Sensor value before and after the neural 
network in for a 5-7-2-7-5 network 

 
Since we have generated these data with a known 
function, we know that these data are originated 
from two independent sources but this is not the 
case for actual application of sensor fault diagno-
sis. In these cases, Nonlinear PCA with KPCA 
algorithms can be used. In fact, the number of ma-
jor principal components represents the number of 
independent variables. In order to show this fact in 
our sample data, the algorithm of KPCA is done 
with radial basis function as defined in Equation 
12. The parameter of radial basis function,σ , is 
changed discretely from 1 to 12 and with each 
value the algorithm of KPCA is applied and the 
first 5 principal values are calculated. Figure 6 
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shows these values. It is obvious from this graph 
that the first two components have much more 
contribution to the variance of total data. 
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Figure 6 –Nonlinear Principal values vs.  σ in radial 
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Figure 7 –Sensor values before and after the fault 
diagnosis algorithm with KPCA  

5. Conclusion  
In summary the problems of AANN as a 

method of Nonlinear PCA and as a technique for 
Sensor Fault Diagnosis are discussed and some 
useful strategies for finding the best architecture 
of AANN are suggested. Specially for the number 
of neurons in bottleneck layer which represents 
the number of independent imbedded variables we 
showed that if this number is more than the num-
ber of independent variables the network does not  
work effectively for the purpose of sensor fault 

diagnosis. Method of Kernel PCA is also dis-
cussed and its pros and cons compared to AANN 
are studied. Since in the method of KPCA is a lazy 
algorithm and the reconstruction of the data form 
embedded variables needs very complicated com-
putations and requires a nonlinear optimization, 
we suggested training of two neural network, for 
mapping and reconstructing respectively. Using 
these two networks in serial emulates an AANN 
and the numerical examples shows the better per-
formance of this method.  
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