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Abstract:- Ants are social insects that work in groups to collectively achieve certain goals that can not be 
achieved by a single ant. One of the most interesting ants’ behaviors is the highly optimized path that ants 
follow, in their foraging, between the source of food and the colony's nest. Researchers are inspired by such 
optimized behavior in several applications. In this paper we introduce an integrated environment for ants-
like agents based on such ants' behavior. Our model can simulate and test the behavior of such agents under 
various conditions and environment changes. 
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1 Introduction 
 
Ant colonies attracted scientists because of their 
ability to collectively achieve complex tasks 
through self-organization processes based on 
simple rules. It is believed that such collectively 
technique is the main reason for the survival of 
such small insects through millions of years on 
earth despite the drastic changes in environment 
and living conditions through history. Imitating 
this behavior, computer scientists and engineers 
are interested in building ants-like agents (e.g. 
ants-robots, see [11]) that has limited sensing and 
computational capabilities, but are simple to 
design, easy to program, and cheap to build. This 
makes it feasible to deploy groups of such agents, 
in places inaccessible otherwise, and take 
advantage of the resulting fault tolerance, 
parallelism, and collectively achievement of a 
certain goal.  One of the most interesting ants’ 
behaviors is the highly optimized path that ants 
follow, in their foraging, between the source of 
food and the colony's nest. The ants’ decision is 
controlled by imitating and following of trails of a 
chemical substance, called pheromone. When 
there is a choice among several alternative paths, 
ants choose a path in a probabilistic way, based 
on the pheromone concentration over the possible 
paths. This mechanism allows the selection of the 
shortest path among several ones [7]. Hence, the 
pheromone concentration on those paths increase 
more rapidly and they attract more ants. This 

process of indirect communication relies on a 
positive feedback mechanism and depends on the 
environment characteristics, e.g. colony size [10], 
food type [13], number of food sources [12] and 
the nature of the environment on which the ants 
are moving [4]. Such optimized behavior inspired 
several applications, for example: traveling 
salesman problem [5], the quadratic assignment 
problem [6], the job shop scheduling problem [2], 
the graph coloring problem [3], the vehicle 
routing problem [1], and network routing 
algorithm with digital pheromone which used by 
British Telecommunications PLC in London to 
solve routing problem and to find the shortest 
path [9]. 
    In this paper we introduce an integrated 
environment for ants-like agents based on such 
ants' behavior. Our system can simulate the 
behavior of such agents under various conditions 
and environment changes. In our model the ants 
are moving in random on an environment that 
contains a randomly distributed source of food. 
Ants move with some simple rules and can 
change direction according to environmental 
information. We test this model with various 
situations and conditions of the environment to 
study how the system works with the pheromone 
information.  In the aim of realizing the practical 
implication of our model, a web-based computer 
simulation is given. This simulation enables the 
study and test for the model under different 
circumstances of the environmental conditions. 
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   The paper is organized as follows. Section two 
contains a description of our model.  In Section 
three we introduce the design of a web-based 
simulation of our model.  Section four contains an 
analysis and study of our model and simulation.  
Finally we conclude our work and discuss further 
research in Section five.  
 

2. The Model 
 
Our model can be described as follows. At a time 
t, the environment has one colony, At ants, and Ft   

food. All are randomly distributed in the 
environment. The ants’ objectives are to collect 
food to colony and to spread pheromone, with 
different levels, to attract other ants’ attention. 
The environment has changeable conditions: ants 
follow the birth/death property according to its 
life cycle, more food may be created if necessary, 
and the pheromone amount can be change 
accordingly.  The flowcharts in figure 1 (a) 
describes the birth/death property of ants, and in 
figure 1 (b) describes the food creation process. 
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After the colony is initialized randomly at some 
position in the environment, the process of 
creating new ants starts. At a time t, if  the 
number of ants At is less than the maximum 
amount of ants  Amax  then, if there is enough 
amount of food, a new ant is created at some 
random position in the environment, see the 
flowchart in figure 1 (a). New food can also be 
created in the environment. After initializing the 
food, at a certain time t, if the amount of food Ft 
is less than the maximum amount of food  Fmax  
then, a new food is created at some random 
position in the environment, see the flowchart in 
figure 1(b). 
An ant anti has a life cycle Li, when Li = 0,  anti  
dies. An ant at a position p can find food in some 
of the surrounding four positions and can fell and 
affected by the pheromone in the surrounding 
twelve positions as shown in figure 2.   
                                                                                         
                                                                                   
 
                                                                                         
 
 
  
                                                   
 
                               
 
 
  
Pheromone is the most important simple way of 
ants’ communication. Pheromone is spread by 
ants and fades away rapidly with time. Ants 
always spread week pheromone and if they find 
food, a stronger pheromone is spread to attract 
other ants’ attention. At a time t, the amount of 
pheromone at position p=(x,y) will be denoted by 

t
yxPheromone , , when no confusion, we simply 

use Pheromone(p).  We define t
yxPheromone ,  

recursively as follows  
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Here Down% and Dneighbor% denote the pheromone 
decrease percent in the position p=(x,y) and the 
neighboring area respectively. This decrease 
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     Figure 1(a): ants birth/death process 

Figure 1(b): food creation process 
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Figure 2: shows the ant, food and pheromone positions 
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percentage is natural due to external factors in the 
environment (in nature, for example wind). The 
Direction set is the set of surrounding areas from 
the four directions around the position p, i.e. 
Direction= {North, East, South, West}. 
 
Pheromone at a certain position can affect the 
amount of pheromone in its neighboring positions. 
Positions are initialized with a small amount of 
pheromone (may be zero). If the pheromone 
amount in a position is greater than zero, this 
position spreads pheromone to the neighbor 
positions in the environment. Then the amount of 
pheromone is decreased in that position. Finally, a 
new pheromone is calculated based on the 
decreased amount of pheromone in the position 
and the amount of pheromone from the 
neighboring positions in the environment and 
from other ants. The flowchart of this process is 
shown in figure 3. 
 
In our model, such pheromone information is 
used to help ants to decide how to select the next 
step.  At a time t, the pheromone information It, in 
a rectangular area X*Y of the environment, is 
calculated using the formula: 
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At a time t, the amount of food carried to the 
colony by an anti is denoted by F(anti). In our 
model we assume some dependency among ants. 
An initial dependency percentage (Dep%) can be 

initialized in the model. If Dep%  is initialized to 
zero, then no dependency among components.  
The dependency Dep(p) at some position p is 
calculated by the percentage of the pheromone at 
p, Pheromone(p), multiplied by the initial 
dependency percentage Dep%, i.e.   

%
100

)(
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A unique behavior in our model is the property of 
ant's trait homing instinct . When ants’ life is near 
its end, ants want to go home colony or rest some 
time. Also if ants have many food, they want to 
take back home quickly. At any moment, the anti 
desires to go back home to the colony can be 
measured by the probability P(h) as follows:   
                               

u
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Here D(anti, colony) is the distance between the  
anti  and the colony, and w and u are some 
arbitrary values. When testing our model in our 
simulation with different values of w and u, we 
found that our ants-like agents work as near as 
real ants when the value of w=20 and the value of 
u=8. 
In our model, ants move on a random walk. There 
is a set of five basic actions; Actions={move one 
step forward, turn right, turn left,  rest in same 
place,  pick up food}. Every action is initialized 
with a base probability, Pbase (i) for all i in the set 
of Actins. At a time t, if  anti  is at position (x,y), 
the probability of action of anti is calculated as 
follows.  
 
P(move)  = Pbase(move)  + Dep(front position) + P(h) 
P(turnR)=P(turnR) + Dep(right position)+Dep(back position)+ P(h) 
P(turnL)= P (turnL) + Dep(left position)+ Dep(back position) + P(h) 
P(pick)  = Pbase (pick)  + F(x,y)* Pheromone(x,y) 

P(Rest)  = Pbase (Rest)  + 
n

antFLm ii )(1()( +∗−
  

 
Here F(x,y) and Pheromone(x,y), represent the 
amount of food and the amount of pheromone at  
the position (x,y), i.e. the anti ‘s position, 
respectively. While m and n represent some 
arbitrary values. Experimentally, we found that 
our ants-like agents works as near as real ants 
when the value of m=120 and the value of n=20.  
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Figure 3: shows how pheromone in one position affects another.               
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 The ants’ actins in our model are described in the 
flowchart of figure 3.                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                                                       
 
 
Ants are randomly created in the environment. If 
the ant is in colony, then if it holds food, release 
that food, decrease the life cycle of the ant and 
check the ant’s new situation. If not in colony or 
in colony but holds no food, then calculate the 
current pheromone, check for food, and calculate 
the action probability. According to the value of 
the action probability, the ant can: move one step 
forward, turn right, turn left, reset in its position, 
or pick food. If food is picked, then spread some 
amount of pheromone. If not, then if the ant 
already holds food, then spread some amount of 
pheromone. Otherwise spread normal (small) 
amount of pheromone. Next decrease the ant’s 
life cycle and repeat the same process till the end 
of the ant’s life. This process is shown in the 
flowchart in figure 3. 
 
3. Simulation 
 
In this section we introduce a computer 
simulation of our ants’ model described in section 
2. The purpose of this simulation is to visualize 
the model elements such as ants, food and 
pheromone. It also enables us to test the model 
under different environmental conditions. In this 
simulation, we use n x n square lattice with 
absolute boundary conditions to represent the 
environment. All components such as colony, ants, 

and food are distributed randomly on the lattice 
cells. The simulation is designed as a web-based 
Java applet to enable using over the internet. An 
overview of the main menu in our simulator is 
shown in figure 4.  
 
Environment is the most important component in 
our simulation.  The environment cellular 
automaton is used to spread pheromone. Each cell 
holds an integer value between 0 and 255 to 
represent the amount of pheromone in it. The 
simulator allows a set of pheromone 
preconditions. Preconditions are preserved by the 
environment and are used to check the behavior 
of ants in different situations. Five preconditions 
are provided; normal, line, frame, two box and 
squares. These preconditions represent the waves 
of pheromone in the environment, for example 
framed precondition causes the pheromone waves 
to be shaped as a frame. All preconditions keep 
the preset value of pheromone.  Normal condition 
has no preset value.                          

 
 
 
The cellular automaton, that represents the 
environment, is determined by the values of X and 
Y. The simulator has three major parts: 
visualization components, operations, and menu. 
The visualization components show the simulator; 
which visualize and simulate the model 
components (colony, ants, food, and pheromone) 
and the graph which graphically shows the 
relationship between the model components. We 
can trace a specific ant by initializing its ID 
number (from 1 to Amax). Then we can follow up 
the random walk of that ant by using the random 
walk button. The information part shows much 
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Figure 4: shows the possible actions of ants in our 

Figure 5: shows the main menu of our simulator 
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information about the simulation and the traced 
ant. For example we can show the mean square 
end to end distance of all the ants’ random walks 
and the mean square radius of gyration. We can 
also see the amount of pheromone as a function of 
time, and many more information. The second 
part of the simulator is the operations. The 
operations that controls the simulation are simple, 
it is to start running the simulator as a whole or as 
step by step, or to clear the initialization so we 
can try another run with new values. The menu 
part of the simulator has many options to control 
the simulation process. We can set the initial 
values of ants and food, the position of the colony, 
and we can control the creation of food and ant 
through changing the parameters (as defined in 
the previous section). The pheromone can be 
controlled and initialized. The spread conditions 
can be modified. Finally the dependence values 
can also be controlled. Figure 5 (a, b, c, and d) 
shows all the visual components of the simulator. 

 

 

 
 

 
 

4. Analysis  
 
To analyze our model we test it with two different 
conditions: when food is randomly distributed in a 
limited area of the environment and when food is 
randomly distributed in the entire environment. 
Within each condition  five cases are considered 
for the pheromone dependency conditions.  Then 
we compare the results to see how the model 
behaves. In this experiment we consider the 
cellular automaton enviornmnet with 50x50 cells, 
40 ants, and 200 foods. We compare the values of 
average pheromone amount It/a, food in colony Ct, 
current food amount Ft, and number of ants At, in 
a time period t up to 1000.  The five pheromone 
dependency conditions are: 
 

a. No dependency i.e. the value of initial 
dependency Dep% = 0% 

b. Dependency is Dep% = 30%, pheromone 
stay longer, and ants attracted to 
pheromone 

c. Dependency is Dep% = 30%, pheromone 
stay shorter, and ants attracted to 
pheromone 

d. Dependency is Dep% = 30%, pheromone 
stay longer, and ants disperse from 
pheromone 

e. Dependency is Dep% = 30%, pheromone 
stay shorter, and ants disperse from 
pheromone 

 
Cases b and c are testing the closing ants’ 
behavior: ants spread strong pheromone when 
find food. Cases d and e are testing the avoiding 
ants’ behavior: ants spread strong pheromone 
when they bring food to colony. The ants’ action 
is pheromone dependent, so it is interesting to see 
how such pheromone conditions can affect the 
ants’ behavior. The following tables summarize 
the experiment results. Table 1 summarizes the 
results of the five cases with respect to condition 
one, i.e. food is randomly distributed in a limited 
area of the environment. Table 2 summarizes the 
results for the second condition, i.e. when food is 
randomly distributed in the entire area of the 
environment.     
 
    
 Figure 5 (a-d) 
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Since the mission of ants-like agents in our model 
is to collect food in colony, the results show that 
agents work better with condition one than 
condition two since the average collected food 
with condition one is 133.2, and the average 
collected food with condition two is 106.8. This 
result coincides with our intuition, since food in 
limited area can be collected faster than food in a 
large area. Within condition one, we found that 
case d is better since more food is collected. This 
shows that sometime too much pheromone can 
cause ants’ confusion.  Within condition two case 
a shows a better result since more food is 
collected. 
 
5. Conclusion  
In this work we introduced a model for ants-like 
agents based on ants’ behavior. We also 
introduced a visual simulation of the model as a 
web-based java applet. Then we tested and 
analyzed our model through the web-based 
simulation. We figure out the conditions in which 
our model can behave like real ants in nature. 
However our model is more general, it can cover 
many more situations. This makes it a suitable 
model for ants-like agents (such as ants-robots).  
Like real ants, ants-like agents in our model rely 
on the pheromone as a mean method of 
communication and interaction with the 
environment. This kind of model may not be 
suitable in some situations in real life, where 
agents should be able to learn from the 
environment and deal with changeable 
environmental conditions more intelligently.  For 
this purpose we plan to introduce intelligent ants:  
ants that can learn from its environment and 
change its behavior accordingly.  We can utilize 
one of the neural networks techniques (such as 
back-propagation) or genetic algorithms for that 
purpose. Our system is temporarily available at 
[8]. 
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 It/a Ct Ft At 

a 0 122 43 15 

b 321 141 21 18 

c 124 127 41 16 

d 320 147 28 12 

e 193 129 40 12 

 It/a Ct Ft At 

a 0 130 45 7 

b 104 101 56 9 

c 134 93 70 7 

d 90 103 90 3 

e 74 107 77 10 

Table 1: results for condition 1         Table 2: results for condition 2 
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