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ABSTRACT: - In this paper  we consider the problem of finding the efficient frontier associated with 
the standard mean-variance portfolio optimization model. We extend the standard model to include 
cardinality constraints that limit a portfolio to have a specified number of assets, and to impose 
limits on the proportion of the portfolio held in a given asset (if any of the asset is held). We 
illustrate the differences that arise in the shape of this efficient frontier when such constraints are 
present. We present some heuristic algorithms based upon genetic algorithms. We used a new 
operator and posed a multi-objective optimization function to achieve the results. 
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1. INTRODUCTION 
 
The selection of an appropriate portfolio of 
assets in which to invest is an essential 
component of fund management. Although a 
large proportion of portfolio selection 
decisions are taken on a qualitative basis, 
quantitative approaches to selection are 
becoming more widely adopted. Markowitz 
[34,35] set up a quantitative framework for 
the selection of a portfolio. 
 
In this framework it is assumed that asset 
returns follow a multivariate normal 
distribution. This means that the return on a 
portfolio of assets can be completely 
described by the expected return and the 
variance (risk). For a particular universe of 
assets, the set of portfolios of assets that offer 
the minimum risk for a given level of return 
form the efficient frontier. The portfolios on 
the efficient frontier can be found by 
quadratic programming (QP). The strengths 
of this approach are that QP solvers are 
available and efficient in terms of computing 
time. The solutions are optimal and the 
selection process can be constrained by 
practical considerations which can be written 

as linear constraints. The weaknesses are of 
two kinds: (1) the underlying assumption of 
multivariate normality is not sustainable. The 
distribution of individual asset returns tends 
to exhibit a higher probability of extreme 
values than is consistent with normality 
(statistically this is known as leptokurtosis). 
This departure from multivariate normality 
means that distribution moments higher than 
the first two moments (expected return and 
variance) need to be considered to fully 
describe portfolio behaviour. (2) integer 
constraints that limit a portfolio to have a 
specified number of assets, or to impose 
limits on the proportion of the portfolio held 
in a given asset (if any of the asset is held) 
cannot easily be applied. Constraints of this 
type are of practical significance. This paper 
examines the use of three standard heuristic 
methods in portfolio selection. 
 
The method considered here is a genetic 
algorithm The attraction of this approache is 
that it is effectively independent of the 
objective function adopted. This means that 
the Markowitz quadratic objective function 
can potentially be replaced in the light of the 
first set of weaknesses identified above. In 
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addition, the imposition of integer constraints 
is straightforward. In this paper the heuristics 
that we have developed are described and 
their performance compared with that of QP 
for the construction of the unconstrained 
efficient frontier (UEF). This approach allows 
the closeness of the heuristic solutions to 
optimality to be measured. The performance 
of the heuristic methods in constructing the 
efficient frontier in the presence of a 
constraint fixing the number of assets in the 
selected portfolio is demonstrated. This 
frontier is called the cardinality constrained 
efficient frontier (CCEF). 
 
2. FORMULATION 
 
In this section we formulate the cardinality 
constrained mean-variance portfolio 
optimisation problem. We first formulate the 
unconstrained portfolio optimisation problem 
and illustrate how to calculate the efficient 
frontier. We then comment on the approaches 
presented in the literature that have used a 
different objective function. Finally we 
formulate the cardinality constrained 
problem. 
 
2.1 Unconstrained problem 
 
Let: N be the number of assets available 
R* be the desired expected return Then the 
decision variables are: The proportion held of 
asset i (i=1,...,N) and using the standard 
Markowitz mean-variance approach 
[14,15,34,35,42] we have that the 
unconstrained portfolio optimisation problem 
is: 
 
minimise (A) subject to conditions (B) 
 
Equation (A) minimises the total variance 
(risk) associated with the portfolio whilst 
equations (B) ensures that the portfolio has an 
expected return of R*. Equations (B) also 
ensures that the proportions add to one. This 
formulation is a simple nonlinear (quadratic) 
programming problem for which 
computationally effective algorithms exist so 
there is (in practice) little difficulty in 
calculating the optimal solution for any 

particular data set. Note here that the above 
formulation can be expressed in terms of a 
correlation between assets i and j and the 
standard deviations si, sj in returns for these 
assets. 
  
2.2 Efficient frontier 
 
By resolving the above QP  for varying 
values of R* we can trace out the efficient 
frontier, a smooth non-decreasing curve that 
gives the best possible tradeoff of risk against 
return, i.e. the curve represents the set of 
Pareto-optimal (non-dominated) portfolios. 
Throughout this paper we refer this curve as 
the unconstrained efficient frontier (UEF). 
For the unconstrained case it is standard 
practice to trace out the efficient frontier by 
introducing a weighting parameter and 
considering: 
 
minimise (X)_ subject to constraints (Y) 
 
There is a case that represents maximise 
expected return (irrespective of the risk 
involved) and the optimal solution will 
involve just the single asset with the highest 
return. In another case one represents 
minimise risk (irrespective of the return 
involved) and the optimal solution will 
typically involve a number of assets. Values 
of �satisfying 0<�<1 represent an explicit 
tradeoff between risk and return, generating 
solutions between the two extremes �=0 and 
�=1. As before, by resolving this QP for 
varying values of �, we can trace out the 
efficient frontier. To see that this is so 
consider a particular value of �, e.g. �=0.25. 
By varying �(varying the slope of the iso-
profit lines) and solving equations (5)-(7) we 
can trace out exactly the same efficient 
frontier curve as we would obtain by solving 
equations for varying values of R*. 
 
2.3 Other objectives 
 
Departures from the standard Markowitz 
mean-variance approach presented above 
include the following considerations: (a) 
whether variance is considered to be an 
adequate measure of the risk associated with 
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the portfolio or not; and (b) including 
transaction costs associated with changing 
from a current portfolio to a new portfolio.  
  
2.4 Constrained problem 
 
In order to extend our formulation to the 
cardinality constrained case let: K be the 
desired number of assets in the portfolio be 
the minimum proportion that must be held of 
asset i (i=1,...,N) if any of asset I is held and i 
be the maximum proportion that can be held 
of asset i (i=1,...,N) if any of asset i is held 
where we must have 0≤�i≤�i≤1 (i=1,...,N). 
In practice �i represents a "min-buy" or 
"minimum transaction level" for asset i and 
�i limits the exposure of the portfolio to asset 
i. Introducing zero-one decision variables: 
zi = 1 if any of asset i (i=1,...,N) is held = 0 
otherwise the cardinality constrained 
portfolio optimisation problem is minimise 
(D) subject to some conditions 
 
Equation (D) minimises the total variance 
(risk) associated with the portfolio whilst 
conditions ensures that the portfolio has an 
expected return of R*. Conditions also 
ensures that the proportions and that exactly 
K assets are held. The objective function 
involving as it does the covariance matrix, is 
positive semi-definite [8,9,18,43,46] and 
hence we are minimising a convex function. 
Note here that we have explicitly chosen to 
formulate this problem with an equality 
(rather than an inequality ≤) with respect to 
the number of assets in the portfolio. This is 
because if we can solve the equality 
constrained case then any situation involving 
inequalities (lower or upper limits on the 
number of assets in the portfolio) can be 
easily dealt with.  
 
Under our approach the decision-maker will 
be faced with a different CCEF for each value 
of K and must explicitly consider the 
tradeoffs involved in deciding which 
portfolio to adopt. An illustration of this is 
given in Section 5.5 below. 
 
2.5 Practical constraints 
 

There are a number of constraints that can be 
added to our constrained formulation to better 
reflect practical portfolio optimisation. (a) 
Class constraints Let �m, m=1,...,M be M 
sets of assets that are mutually exclusive. 
Class constraints limit the proportion of the 
portfolio that can be invested in assets in each 
class. Let Lm be the lower proportion limit 
and Um be the upper proportion limit for 
class m then the class constraints are: 
 
Lm ≤wi ≤Um m=1,...,M  
 
Such constraints typically limit the 
"exposure" of the portfolio to assets with a 
common characteristic. For example typical 
classes might be oil stocks, utility stocks, 
telecommunication stocks, etc. The heuristics 
presented in this paper do not deal with 
constraints of this type. (b) Assets in the 
portfolio Assets which must be in the 
portfolio can be accommodated in our 
formulation simply by setting zi to one for 
any such asset i. Although we do not present 
it below the changes required to our 
heuristics to deal with this are trivial. 
 
3. CONSTRAINED EFFICIENT FRONTIER 
 
One aspect of constrained portfolio 
optimisation that appears to have received no 
attention in the literature is the fact that in the 
presence of constraints of the type we have 
considered above the efficient frontier is 
markedly different from the UEF. In this 
section we illustrate this. 
 
3.1 Minimum proportion constraints 
 
To illustrate the effect of imposing a nonzero 
minimum proportion the efficient frontier for 
the case where �i=0.24 and �i=1, 
(i=1,2,3,4). It is clear that again the efficient 
frontier is discontinuous and has portions that 
are invisible to an exact approach based upon 
weighting.  
 
4. HEURISTIC ALGORITHMS 
 
In this section we outline the three heuristic 
algorithms based upon genetic algorithms, 
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tabu search and simulated annealing that we 
have developed for finding the CCEF. We 
also discuss here any application of these 
techniques to portfolio optimization 
previously reported in the literature. Note 
here that all of our heuristics use the weighted 
formulation presented in Section 3.2 above.  
 
With respect to the first of these two reasons 
the CCEF, as found by the heuristics 
presented below, for the four asset example 
(K=2) considered previously. Hence, for this 
example, our heuristics have found all 
portions (visible or invisible) of the CCEF. 
With respect to the second of these reasons it 
might appear that we would be in a better 
position to design a heuristic algorithm if the 
equality constraint relating to return were 
changed to an inequality, i.e. to wi�i ≥R*. 
 
4.1 Genetic algorithms 
 
A genetic algorithm (GA) can be described as 
an "intelligent" probabilistic search 
algorithm. The theoretical foundations of 
GAs were originally developed by Holland 
[24]. GAs are based on the evolutionary 
process of biological organisms in nature. 
During the course of evolution, natural 
populations evolve according to the 
principles of natural selection and "survival 
of the fittest". Individuals which are more 
successful in adapting to their environment 
will have a better chance of surviving and 
reproducing, whilst individuals which are less 
fit will be eliminated. This means that the 
genes from the highly fit individuals will 
spread to an increasing number of individuals 
in each successive generation. The 
combination of good characteristics from 
highly adapted parents may produce even 
more fit offspring. In this way, species evolve 
to become increasingly better adapted to their 
environment. A GA simulates these processes 
by taking an initial population of individuals 
and applying genetic operators in each 
reproduction. In optimisation terms, each 
individual in the population is encoded into a 
string or chromosome which represents a 
possible solution to a given problem. The 
fitness of an individual is evaluated with 

respect to a given objective function. Highly 
fit individuals or solutions are given 
opportunities to reproduce by exchanging 
pieces of their genetic information, in a 
crossover procedure, with other highly fit 
individuals. This produces new "offspring" 
solutions (i.e. children), which share some 
characteristics taken from both parents. 
Mutation is often applied after crossover by 
altering some genes in the strings. The 
offspring can either replace the whole 
population (generational approach) or replace 
less fit individuals (steady-state approach). 
This evaluation-selection-reproduction cycle 
is repeated until a satisfactory solution is 
found.  
 
A more comprehensive overview of GAs can 
be found in [4,38,40,41]. Arnone, Loraschi 
and Tettamanzi [3] presented a GA for the 
unconstrained portfolio optimisation problem, 
but with the risk associated with the portfolio 
being measured by downside risk rather than 
by variance. Computational results were 
presented for one problem involving 15 
assets. Loraschi, Tettamanzi, Tomassini and 
Verda [32] presented a distributed GA for the 
unconstrained portfolio optimisation problem 
based on an island model where a GA is used 
with multiple independent subpopulations 
(each run on a different processor) and 
highly-fit individuals occasionally migrate 
between the subpopulations. Computational 
results were presented for one problem 
involving 53 assets comparing their 
distributed GA with the GA presented in [3]. 
 
4.2 Genetic algorithm heuristic 
 
In our GA heuristic the chromosome 
representation of a solution has two distinct 
parts, a set Q of K distinct assets and K real 
numbers si . We need an iterative procedure 
to ensure that the constraints relating to the 
upper limits �i are satisfied. Note here that 
Algorithm 1 can be viewed as a heuristic for 
solving the with a given set of K assets. 
Whilst, obviously, this QP could be solved 
optimally this would not lead to a 
computationally efficient heuristic 
(examining as we do a large number of 
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possible solutions). Note here that the 
strategy adopted in Algorithm 1, namely to 
change (if possible) the GA solution into a 
feasible solution for the original problem, is a 
strategy that we have used, with success, in 
our previous GA work [7,13]. We used a 
population size of 100. Parents were chosen 
by binary tournament selection which works 
by forming two pools of individuals, each 
consisting of two individuals drawn from the 
population randomly. The individuals with 
the best fitness, one taken from each of the 
two tournament pools, are chosen to be 
parents. Children in our GA heuristic are 
generated by uniform crossover. In uniform 
crossover two parents have a single child. If 
an asset i is present in both parents it is 
present in the child (with an associated value 
si randomly chosen from one or other parent). 
If an asset i is present in just one parent it has 
probability 0.5 of being present in the child. 
Children are also subject to mutation, 
multiplying by 0.9 or 1.1. We used a steady-
state population replacement strategy. With 
this strategy each new child is placed in the 
population as soon as it is generated 
(replacing a suitably chosen member of the 
population). In our GA we choose to replace 
the member of the population with the worst 
objective function value. 
 
5. COMPUTATIONAL RESULTS 
 
In this section we present computational 
results for the heuristic algorithm we have 
presented above for finding the CCEF.  
 
5.1 Test data sets 
 
To test our heuristics we constructed five test 
data sets by considering the stocks involved 
in Bovespa. We had 252 values for each 
stock from which to calculate (weekly) 
returns and covariances and the size of our 
five test problems ranged from N=31 to 
N=225. 
 
5.2 Unconstrained efficient frontier 
 
In order to initially test the effectiveness of 
our GA heuristics we first used them to find 

the UEF. Adopting this approach has the 
advantage that (as mentioned in Section 2 
above) the UEF can be exactly calculated via 
QP so our heuristic results can be compared 
with benchmark optimal solutions. The 
reason for doing this comparison is simply 
that for the CCEF we have no way of 
calculating the exact efficient frontier for 
problems of the size we are considering, and 
hence no way of benchmarking our heuristics 
against the exact solution. We would 
anticipate that, unless our heuristics are able 
to find the UEF to a reasonable degree of 
accuracy, they are unlikely to be able to find 
the CCEF.  
 
5.2.1 UEF calculation
 
In the computational results presented below 
we took 2000 return (R*) values, hence 
calculating 2000 distinct points on the 
continuous exact UEF. For adjacent points 
we used linear interpolation to approximate 
the exact UEF. This calculation of the 
percentage deviation of each portfolio from 
the (linearly interpolated) exact UEF is not as 
trivial as it might at first sight appear and we 
consider this below. 
 
5.2.2 Percentage deviation calculation 
 
There are two basic issues: (a) how we 
measure the percentage deviation ("distance") 
of a portfolio from a continuous efficient 
frontier; and (b) how we quantify this 
percentage deviation in the case of a linearly 
interpolated efficient frontier. 
 
With respect to second issue mentioned 
above, quantifying the percentage deviation 
in the case of a linearly interpolated efficient 
frontier we, in order to work in 
commensurate units, used the portfolio 
standard deviation (rather than variance) in 
computing percentage deviation. 
 
5.2.3 Results 
 
With regard to all the computational results 
reported in this paper we examined 50 different 
�values (E=50, Algorithms 2-4). With regard to 
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the number of iterations T* (see agorithms 2-4) 
we used T*=1000N for the GA heuristic. These 
values mean that (excluding initialisation) each 
heuristic vluates exactly 1000N solutions each 
value of X. . We show, for each of our five data 
sets and each of our three heuristics: 
 
(a) the median percentage error (b) the mean 
percentage error (c) the total computer time 
in seconds. 
 
Note here however that, as all of our 
algorithms are heuristics, we can provide no 
guarantees as to the quality (deviation from 
the exact CCEF) of any particular portfolio in 
the set H. In particular a portfolio in H could 
be on the exact CCEF or could be dominated 
by another portfolio (not in H) which is on 
the exact CCEF. We show, for each of our 
five data sets and each of our three heuristics: 
(a) the median percentage error (b) the mean 
percentage error (c) the number of 
(undominated) efficient points. 
 
For some data sets there are considerable 
differences in the percentage error measures, 
indicating that the algorithms give 
significantly different results. Hence we 
would envisage that a sensible approach to 
the cardinality constrained portfolio 
optimisation problem in practice would be to 
run all three heuristics and to pool their 
results in an obvious fashion (i.e. combine the 
three sets of undominated points given by the 
three algorithms together into one set and 
eliminate from this new set those points 
which are dominated). Note here that we 
stated before (Section 4) that using our 
heuristics it is possible to gain information 
about those portions of the CCEF that would 
be invisible to an exact approach based upon 
weighting.  
 
6. CONCLUSIONS 
 
In this paper we have considered the problem 
of calculating the efficient frontier for the 
cardinality constrained portfolio optimisation 
problem. We highlighted the differences that 
arise in the shape of this efficient frontier as 
compared with the unconstrained efficient 

frontier. Computational results were 
presented for genetic algorithms for finding 
the cardinality constrained efficient frontier. 
These indicated that a sensible approach was 
to pool their results. 
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