
Bridging Disjoint Trusted Domains into a Trustworthy System

ZHENG YAN

Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki, Finland

zheng.z.yan@nokia.com

PENG ZHANG

Nokia Forum, Keilalahdentie 2-4, 00045, Espoo, Finland

peng.p.zhang@nokia.com

Abstract: - With the rapid growth of digital computing and networking technologies, trust becomes an

important aspect in the establishment of a secure digital system. Based on different reasons of trust, different

trusted domains, possibly disjoint, are formed in a digital system, preventing the complete system from

working improperly. What lacks therein are bridges that can link domains, across trust gaps to establish a

complete trusted system. In this paper, we apply a methodology for establishing a trustworthy system through

bridging disjoint domains of trust together. We illustrate how to analyze and design a trustworthy system by

applying the methodology into a concrete example with regard to establishing a trustworthy middleware

platform for component software.

Key-Words: - Trust management, Trusted computing, Security

1 Introduction
Trust is an important aspect in the establishment of a

secure system [1]. However, trust is such a

subjective and dynamic concept that different

entities can hold different opinions on it even while

facing the same situation [2]. Based on different

trust perception, different trusted domains can be

formed.

In today's digital systems, we can find many

cases in which a system is actually formed by a

number of the trusted domains and the

communications and collaborations are actually

conducted among and across those domains. A

significant problem may arise from the fact that

different domains must cooperate in order to provide

a complete service even though they may not share

the same concept of trust. Specifically, security

problems may be caused by the deficiency of trust

among domains. This deficiency is likely one of the

major barriers that prevent the proliferation of

digital communications and collaborations. The

deficiency of trust is visible as gaps between the

trusted domains established by different entities. For

example, the proper selection of a number of

component software to organize a trusted

application (a trusted domain) has been causing a lot

of problems [3].

Recently, many mechanisms and methodologies

are developed for supporting trusted

communications and collaborations among

computing nodes in distributed systems (e.g. Ad

Hoc Networks, P2P systems and GRID computing

systems) [4-7]. These methodologies are based on

digital modeling of trust for trust evaluation and

management. Most of existing solutions focus on the

evaluation of trust, but lack a proposal regarding

how to manage trust based on the evaluation result.

We found that these methods are feasible for

supporting the trustworthiness of a digital system at

the system runtime. However, little work considers a

solution from the system analysis and design point

of view.

Regarding trust modeling, various

methodologies can be applied for solving different

issues. Some trust models are based on sound

technologies, e.g. PKI [8]. A big number of trust

models are built up targeting at some special trust

properties, such as reputations, recommendations

and risk [9, 10]. Many trust models have been

constructed for various computing paradigms such

as GRID computing, ad hoc networks, and peer-to-

peer systems [4-6]. In those models, some are

computational, others are linguistic or graphic.

Although a variety of trust models are available, it is

still not well understood what fundamental criteria

the trust models must follow. Without a good

answer to this question, the design of trust models is

still at the empirical stage [7].

In our previous work [11], we presented a

methodology for bridging different disjoint trusted

domains in mobile communications. In this paper,

we apply the methodology and demonstrate it for

establishing a trustworthy system by illustrating it

with a real example.

The rest of the paper is organized as follows.

Section two introduces the methodology to bridge

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 116

the trusted domains in a digital system. In section

three, we present the UML modeling of the

methodology, and illustrate how to use it to analyze

and design a trustworthy system through applying it

into a concrete example in Section four. Finally,

conclusions are provided in the last section.

2 Methodology to Bridge Different

Domains of Trust
In this section, we introduce the methodology that

helps to analyze trust inside any digital system by

modeling the system into a number of trusted

domains formed by different entities [11]. In order

to solve the issue of trust gaps, we further propose

three approaches to bridge the disjointed domains.

2.1 Definitions
Herein, we introduce some definitions that are

related to the proposed methodology.

- Trust

We define trust as the confidence or belief of Entity

A on another Entity B based on the expectation that

Entity B will perform a particular action important

to Entity A (trustor) [12]. The trustor could be a

mobile device user, an enterprise company or a

terminal node in an ad hoc network. The trustee

could be a mobile device, a computing platform or a

system providing various services.

- Trusted domain
The trusted domain is not an entirely new concept in

the literature, but the following definition of the

trusted domain is used herein. A trusted domain is a

set of domain entities (e.g. service providers),

defining trust statements and domain components

(e.g. devices) such that all domain entities share

certain trust statements regarding their trust

definition for a specified purpose, and all domain

components adhere to such trust definition and

implement the statements. A trust statement

identifies requirements of the domain entities to be

trusted, and must be fulfilled by the domain

components.

In Figure 1, an example of three trusted domains

is presented. Domain D1 consists of an entity A and

two statements s1 and s2. The statement s1 does not

define any existing component (i.e. there are no

components that fulfill the statement) while the

statement s2 defines two components a and b.

Domain D2 contains entity B and two statements.

The statement s1 (identical with one of the

statements from the domain D1) defines component

c while statement s3 defines component d. Finally

domain D3 has two entities: C and D with two

statements. Statement s4 defines two components d

and e, in which the former is shared with the domain

D2. Statement s5 defines two components e and f, in

which the former is also defined by the statement s4.

Note that the component d fulfills both the statement

s3 and s4, so that the D2 and D3 are naturally

bridged by the component d.

Figure 1: An example of three trusted domains in a

system

In other words, a trusted domain is established

whenever some entity or entities (such as a user, an

operator or a service provider) trusts or trust some

components for a specific purpose, regardless of the

reasons for the trust that can be both subjective and

objective, either rational or irrational. Herein,

special interest is placed in the domains where their

components are hardware or software components in

a digital system.

- Trusted bridge

Based on the above definition of the trusted domain,

we can see that full trust is retained inside the trusted

domain while trust may be missing among the

domains. This may cause a trust gap in places where

the trusted domains do not overlap.

For the success of the digital systems, all the

trusted domains that are essential for the complete

system must intersect, i.e. there must be at least one

component (or a chain of them) that is trusted by the

entities communicating with each other. If it is not

the case, a bridging solution should be identified and

on that basis the bridging component must be

created. Such a trusted bridge can be as simple as the

component that is trusted by either domains, or

complex, with its own respective entities, statements

and components that can bridge the disjoint trusted

domains.

A trusted bridge is a component or a set of

components that is/are trusted by more than one

domain. Therefore such component(s) can work as a

bridge to establish trust among those domains. Note

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 117

that if any of the bridged domains contain more than

one statement, it is sufficient for the trusted bridge to

implement one of those statements for each of the

domains it is bridging.

In Figure 1, the domains D1 and D2 are disjoint

and no trust can be readily established by any

technical means, while the domains D2 and D3

intersect so that the component d can work as the

trusted bridge to establish the trust between them.

2.2 Digital system organization

Figure 2: Digital communication system

organization

In any digital communication system, we can always

specify the system as a number of trusted domains.

The communications and collaborations are actually

conducted between those domains. Inside each

trusted domain, the domain entities trust the domain

components according to their defining statements,

for whatever reasons they find appropriate. Among

the trusted domains, it is expected that the trust must

be usually created and constructed logically and

rationally. We propose a methodology to analyze the

trusted domains and to create the trusted bridge,

effectively enabling the domains to form a complete

solution as shown in Figure 2.

2.3 System modeling method
The proposed methodology is summarized as

follows.

1. Model the digital system by separating it into a

number of trusted domains formed by different

entities.

2. Analyze each domain in order to extract the

defining statements and list existing domain

components. The resulting graph may resemble

Figure 1.

3. For each pair of disjoint domains that must trust

each other for the purpose of a given service,

seek a bridging solution that can satisfy both

domains (see the discussion below).

4. Form the trusted bridge by finding or creating a

suitable component (or components), or by

establishing bridging domains, depending on

needs (see the discussion below).

This system modeling method can be illustrated

in Figure 3 using a UML use case diagram.

Figure 3: System modeling method

2.4 Trust bridging solutions
There are several approaches to identify the bridging

solution and to introduce the trusted bridge,

depending on the trust statements within the trusted

domains as well as on non-technical limitations.

Following is a short list of those. Throughout the

discussion, the domains D1 and D2 from the

definition of the trusted bridge (as shown in Figure

1) will be used to illustrate the defined concepts.

Approach A: Use an existing component (Figure

4.a.)

The analysis itself may lead to the discovery that

there is already an existing component that may be

trusted by more than one domain. Even though such

a solution may seem trivial, it is the trust-based

analysis itself that is frequently needed. Taking

Figure 4.a as an example, as the domains D1 and D2

share the same defining statement s1, it is sufficient

to verify that the component c (currently within the

domain D2) that fulfills the statement s1 is accepted

also by D1.

Approach B: Create a new component (Figure

4.b.)

If the bridging component does not exist, it is

possible to create it. Some components may conform

to only one statement so that they require an

identical statement in both domains. Some

components may conform to more than one

statement so that they can be used to bridge the

domains with different statements. Note that the

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 118

meaning of the identity of the trust statements

requires further discussion that goes beyond the

scope of this paper.

The use of a multi-statement component has been

already demonstrated at the intersection of the

domains D2 and D3 (as shown in Figure 1). Such a

solution is also viable for the domains D1 and D2,

e.g. in the form of the component g that conforms to

both the statements s2 and s1, as shown in Figure

4.b.

Figure 4: Methods of bridging trusted domains

Approach C: Create a separate domain (Figure

4.c.)

If there is no potential component that may satisfy

the domains (e.g. the statements are significantly

different), the solution may be to create a separate

domain such that its domain components fulfill

statements from both disjointed domains. Such a

domain may share existing or new components with

all the domains it is bridging. We call the created

domain a bridging domain.

For example, domain D4 can be introduced to

bridge disjoint domains D1 and D2. Domain D4

consists of the entity E and three components: the

existing components a and b that conform to the

statement s2 and is trusted also by the D1 and a new

component h that conforms to the statement s1 and

is trusted also by the D2.

If necessary, the creation of the new domain can

be repeated to form a chain of domains until the

bridging is complete, i.e. until there is at least one

chain of domains that links all the domains that were

originally disjoint. Obviously, it is possible to get

multiple solutions to bridge trusted domains. It

depends on further analysis and concrete systems

requirements to decide which one is the best.

3 UML Modeling of the Methodology
It is significant that this methodology can be applied

into any system analysis and design. It provides a

special approach for security analysis from the trust

point of view. Based on the analysis, people can

define the topology of trust needed. It will be also

potentially easier to find the proper component with

appropriate technologies to bridge the trust gap that

otherwise may cause security problems. Therefore,

this methodology helps us to set up a secure and

trusted system and aids us to seek new business

opportunities, e.g. via seeking the proper trusted

bridges to find new products or novel functions.

We further use UML (Unified Modeling

Language) to make this methodology compatible

with any digital system design. UML is a visual

object oriented language for system and software

development. It helps to present the system or

application visually with graphical diagrams before

actually programming or coding it. In this section,

we use the UML to model the proposed

methodology for supporting the design of a

trustworthy system. In particular, we apply different

UML diagrams in order to understand the

methodology from different views.

The UML modeling includes several diagrams

that present the concrete procedures of the

methodology and the relationships among the

system components. In addition, these diagrams

virtually model the methodology from different

views in order to clarify the relationships between

the actor and the components.

3.1 Class diagram
The class diagram shown in Figure 5 further clarifies

component relationships and basic attributes

attached to each component. It also shows the

methods that belong to each component object.

What is more, this diagram works as the basis for the

development of the methodology in order to support

the design of a trustworthy digital system.

3.2 Collaboration diagram
The collaboration diagram shown in Figure 6 further

identifies the runtime relationships among different

design players targeting to work out a trustworthy

digital system. This diagram helps on runtime view

generation when applying this methodology.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 119

*

*

*

2..*

1

*

*

* implement

SystemDesigner: Actor

aSystem: System

aBridge: Bridge

aDomain: Domain

aStatement: Statement

aComponent: Component

Entity

name : String

members : StringList

- setMembers : Boolean

- getMembers : StringList

- setEntityStatements : Boolean

- getEntityStatements : List Statement

- setEntityComponents : Boolean

- getEntityComponents : List Component

- setEntityDomain : Boolean

- getEntityDomain : Domain

Domain

System

systemName : String

- setSystemName

- getSystemName : String

- setSystemDomains

- getSystemDomains

- addDomain

- removeDomain

- addBridge

- removeBridge

Domain

domainName : String

- setDomainName : Boolean

- getDomainName : String

- setDomainEntity

- getDomainEntity

+ findComponentbyStatement

+ findStatement

+ findComponent

+ getStatementList

System

aEntity: Entity

Statement

content : String

statementComponents : List Component

- setStatementContent

- getStatementContent

- setStatementComponent

- getStatementComponent

Domain Entity

Component

componentName : String

componentID : Int

componentCategory : String

- setComponentName

- getComponentName

- setComponentID

- getComponentID

- setComponentCategory

- getComponentCategory

Domain Statement

Bridge

bridgeName : String

bridgedDomains : List Domain

- setBridgeName

- getBridgeName

- setBridgedDomains

- getBridgedDomains

+ useExistingComponent : Component

+ useExistingComponents : List Component

+ createNewComponent

+ createNewDomain

- getDomainSatementList (domainName)

- getDomainComponentList (domainName)

Actor

actorName : String

- setActorName

- getActorName

Figure 5: Class diagram of system components

Figure 6: Runtime relationships among system

design players

4 Applicability Illustration

EU ITEA Trust4All project aims to build up a

trustworthy middleware architecture in order to

support easy and late integration of software from

multiple suppliers and still have dependable and

secure operation of the resulting system [12]. This

project is based on Robocop middleware runtime

environment that has no any support on trust and

security [13]. One important objective of Trust4All

is to embed trust and security support into the

existing Robocop component software platform.

How to design a trustworthy system based on the

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 120

existing Robocop platform is a vital issue of the

Trust4All platform design.

The software architecture of the Robocop system

consists of layered architecture: an application layer

that provides features to a user; a component-based

middleware layer that provides functionality to

applications; and, a platform layer that provides

access to lower-level hardware. Using components

to construct the middleware layer divided this layer

into two developmental layers: a component sub-

layer that contains a number of executable

components and a runtime environment (RE) sub-

layer that supports component development.

The component runtime supporting frameworks

exist at the runtime sub-layer. These frameworks

provide functionalities for supporting component

properties and for managing components. For

example, a system framework takes care of system

configurations related to the components. An

execution framework will be involved when a

component service needs cooperation with other

components’ services. A download framework is

responsible for downloading a component. In

addition, the runtime environment consists of a

component framework that treats DLL-like

components. This provides a system-level

management of the software configuration inside a

device. Each component contains services that are

executed and used by applications. The services

have interactions with other services and they

consume resources. For some of the frameworks in

the runtime environment, they have to be supported

with platform functionality. For example, for a

resource framework, support for resource usage

accounting and enforcement is required from the

platform layer.

Figure 7: Trusted domains of Robocop system

The Robocop system can be modeled as a

number of trusted domains based on the layered

system architecture, as shown in Figure 7. Through

making use of the methodology, we can create a

number of trusted domains according to the existing

Robocop design, as show in Table 1. It is

understandable that there could be a number of

executable software component domains in the

system since the software components can be

provided by different suppliers. Specifically, the

application layer makes use of the services contained

by various components in order to provide expected

features to the device user.

As shown in Figure 7, there are three pairs of

disjointed domains that must trust with each other

for the purpose of providing a number of expected

features to the device user: (a) the platform layer

domain – the runtime environment sub-layer

domain; (b) the runtime environment sub-layer

domain – the various executable SW component

domains; (c) the various executable SW component

domain – the application layer domain.

Table 1: Detailed definitions of Robocop trusted

domains
Name of

Trusted

Domain

Domain

Entity

Domain

Components

Trust Statement

Executable
SW

Component

Domain

SW
component

provider or

developer

Executable
SW

components

that can
cooperate in a

trustworthy

way

The provider or
developer believes

the SW components

are in a good quality
regarding provided

services based on

serious testing and
commonly agreed

interfaces.

Runtime

environment

sub-layer

domain

Robocop

designer

Component

runtime

supporting

frameworks:

component
framework,

download

framework,

system

framework,
execution

framework,

and resource
framework

The Robocop

designer believes

this domain

components provide

functionalities for
supporting SW

component

properties and for

managing SW

components. The
runtime

environment can be

installed and
executed at the

device in a

trustworthy way
with the support of

trusted computing.

Platform

layer domain

Device

vendor

Device

hardware,

OS, various

resources

(e.g.

memory), SW

and HW

components
related to

trusted

computing

The device vendor

believes the device

provides the support

of trusted

computing.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 121

Application

layer domain

Device user Application

user interface
components

The device user

believes that the
interaction with the

device user interface

can achieve his/her
expected features.

For the disjointed trusted domains (a), we firstly

try Approach A and find a common trust statement

“the support of trusted computing”, e.g. as described

in [14]. That means the components related to the

trusted computing that are implemented at the

platform layer domain can ensure the

trustworthiness of the upper layers [15, 16].

Therefore, those components themselves provide a

trusted bridge for the platform layer domain and the

runtime sub-layer domain.

Regarding the disjointed domains (b), we can not

find any solution from Approach A. Then we try

Approach B. We introduce a new component at the

runtime environment layer – a trust management

framework, as described in [15]. In order to build up

the trust relationship among these domains, we

applied both a ‘hard trust’ method and a ‘soft trust’

method. The ‘hard trust’ method uses the embedded

trust management framework that plays as the

trustor entity’s delegate to manage the

trustworthiness of the trustee entity (e.g. a SW

component). This trust management framework also

supports applying a number of trust control

mechanisms that can be used to ensure or sustain the

trust relationships among the domain components.

One important category of the trust control

mechanisms is security related mechanisms, which

include such mechanisms as encryption, decryption,

access control mechanisms, authentication, hash

code based integrity check, etc.

As for the ‘soft trust’ method, the trust

assessment mechanism embedded in the trust

management framework can assess the

trustworthiness of a specified trustee entity based on

runtime observation. In addition, the trust control

prediction and selection mechanisms and the

mechanisms for adaptive trust control model

adjustment that are embedded in the trust

management framework can further support and

enhance autonomic trust management for the

platform [17, 18]. Both methods fall into approach

(b) – create a new component: the trust management

framework to support autonomic trust management.

In practice, this framework cooperates with other

framework (e.g. the resource framework) to realize

the whole system’s trust management. Thus, through

introducing a new component, we generate a new

trusted domain – Trust4All runtime environment

sub-layer domain.

With regard to the third disjointed domains (c),

we need a trusted bridge that can automatically

manage various software components and make

them cooperate together in a trustworthy way in

order to offer expected services or features to the

device user. Through using the methodology, we can

not find any solutions from Approach A and B. We

need to create a new domain as a trusted bridge to

overcome the trust gap. Considering the newly

created Trust4All runtime environment sub-layer

domain, it can provide related trust support

regarding component configuration, component

execution, and communication protection among

different software components through the

cooperation of the trust management framework

with other component runtime supporting

frameworks. Thereby, the Trust4All runtime

environment sub-layer domain can behave as a

trusted bridge to bridge the various executable

software component domains and the application

layer domain together. The final design of the

Trust4All middleware platform is shown in Figure 8

and depicted in details in [15].

Figure 8: Trust4All system architecture

6 Conclusions
In this paper, we introduced and applied the

presented methodology for establishing a

trustworthy system. The methodology provides a

trust modeling and analysis concept into the system

architecture design. Based on the system analysis

and trusted domain modeling, people can define the

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 122

topology of trust in a digital system. This makes it

potentially easier to find a proper component with

appropriate technologies to bridge the trust gaps that

otherwise may cause security problems. We

illustrated how to use the methodology to analyze

and design a trustworthy system through applying it

into a concrete example with regard to establishing a

trustworthy middleware platform for component

software.

For future work, we will further refine the

methodology in order to make it more practical and

feasible for supporting various use cases. In

addition, we will introduce some new features, such

as evaluation and comparison of multiple trust

bridge solutions and trust related feature binding and

verification in software programming.

Acknowledgments
This work is partially sponsored by European Union

ITEA Trust4All project. The authors would like to

thank Dr. Piotr Cofta for his contributions to the

previous paper about the methodology.

References:

[1] Diamadi, Z. Fischer, M.J.: A simple game for

the study of trust in distributed systems.

International Software Engineering Symposium

2001 (ISES'01), Wuhan University Journal of

Natural Sciences Conference (March 2001).

[2] D. Gambetta.: Can We Trust Trust?. In Trust:

Making and breaking Cooperative Relations,

Gambetta, D (ed.) Basil Blackwell. Oxford, (1990).

[3] M. Zhou, H. Mei, L. Zhang, A Multi-Property

Trust Model for Reconfiguring Component

Software, the Fifth International Conference on

Quality Software QAIC2005, 19-20 Sept. 2005,.

[4] Z. Zhang, X. Wang, Y. Wang, A P2P Global

Trust Model Based on Recommendation,

Proceedings of 2005 International Conference on

Machine Learning and Cybernetics, Vol. 7, Aug.

2005

[5] G. Theodorakopoulos, J.S. Baras, On Trust

Models and Trust Evaluation Metrics for Ad Hoc

Networks, IEEE Journal on Selected Areas in

Communications, Vol. 24, Issue 2, Feb. 2006

[6] C. Lin, V. Varadharajan, Y. Wang, V. Pruthi,

Enhancing Grid Security with Trust Management,

Proceedings of IEEE International Conference on

Services Computing (SCC 2004), Sept. 2004

[7] Y. Sun, W. Yu, Z. Han, K.J.R. Liu, Information

Theoretic Framework of Trust Modeling and

Evaluation for Ad Hoc Networks, IEEE Journal on

Selected Area in Communications, Vol. 24, Issue 2,

Feb. 2006

[8] R. Perlman, An Overview of PKI Trust Models,

IEEE Network, vol.13, no.6, Nov.-Dec. 1999

[9] L. Xiong, L. Liu, A Reputation-based Trust

Model for Peer-to-Peer E-commerce Communities,

IEEE International Conference on E-Commerce,

CEC 2003

[10] Z. Liang, W. Shi, PET: A PErsonalized Trust

Model with Reputation and Risk Evaluation for P2P

Resource Sharing, Proceedings of the 38
th
 Annual

Hawaii International Conference on System

Sciences, Jan. 2005

[11] Z. Yan and P. Cofta, “Methodology to Bridge

Different Domains of Trust in Mobile

Communications”, In Proceedings of the 1
st

International Conference on Trust Management

(iTrust 2003), LNCS vol. 2692/2003, Greece, May

2003.

[12] Robocop, Space4U and Trust4All website:

https://nlsvr2.ehv.campus.philips.com/

[13] J. Muskens and M. Chaudron, Integrity

Management in Component Based Systems. In

Proceedings of the 30th EUROMICRO Conference

(Euromicro'04), Volume 00, Washington, DC,

August 31 - September 03 2004, pp. 611-619.

[14] Trusted Computing Group (TCG), TPM

Specification, version 1.2, 2003.

https://www.trustedcomputinggroup.org/specs/TPM/

[15] Z. Yan, R. Maclaverty, "Autonomic Trust

Management in a Component Based Software

System", the 3rd International Conference on

Autonomic and Trusted Computing (ATC06), LNCS

vol. 4158/2006, China, September 2006.

[16] Z. Yan and P. Zhang, “A Trust Management

System in Mobile Enterprise Networking”, WSEAS

Transactions on Communications, Issue 5, Vol. 5,

May 2006.

[17] Z. Yan, “A Methodology to Predict and Select

Control Modes for a Trustworthy Platform”, WSEAS

Transactions on Computer, Issue 3, Vol. 6, March

2007.

[18] Z. Yan, C. Prehofer, "An Adaptive Trust

Control Model for a Trustworthy Component

Software Platform ", the 4th International

Conference on Autonomic and Trusted Computing

(ATC07), LNCS, July 2007.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 123

