
Trust4All: a Trustworthy Middleware Platform for Component

Software

ZHENG YAN, CHRISTIAN PREHOFER, VALTTERI NIEMI

Nokia Research Center, Itämerenkatu 11-13, 00180 Helsinki

FINLAND

zheng.z.yan@nokia.com

Abstract: - Trust plays an important role in a software system, especially when the system is component based

and varies due to component joining and leaving. How to manage trust in such a system is crucial for an

embedded device, such as a mobile phone. This article introduces a trustworthy middleware architecture that

can manage trust in an autonomic way through adopting a number of algorithms for trust assessment and

maintenance with regard to software component download and execution.

Key-Words: - Trust management, Trusted computing, Security, Dependability, Component software

1 Introduction
The growing importance of software introduces

special requirements on trust. This normally implies

that system software consists of a number of

components that are combined to provide user

features. Components interact over well defined

interfaces; they are exported to applications that can

combine and use the components to provide features

to consumers. Thus, common components can be

effectively shared by applications. A typical feature

of devices with component software support is to

allow addition of components after deployment,

which creates the need for trust management with

regard to software component download and

execution.

We adopt a holistic notion of trust which

includes several properties, such as security,

availability and reliability, depending on the

requirements of a trustor. Hence trust is defined as

the assessment of a trustor on how well the observed

behavior (quality attributes) of a trustee meets the

trustor’s own standards for an intended purpose [1].

From this, the critical characteristics of trust can be

summarized. It is both subjective and dynamic.

Concretely, trust is different for each individual in a

certain situation and, sensitive to change due to the

influence of many factors.

EU ITEA Trust4All project aims to build up a

trustworthy middleware architecture in order to

support easy and late integration of software from

multiple suppliers and still have dependable and

secure operation of the resulting system. Nokia

Research Center participates in this project as a

partner.

In this article, we introduce Nokia’s work

conducted in the Trust4All Project towards

autonomic trust management for a component

software platform. Obviously, it does not suffice to

require the trustor (e.g. most possibly a digital

system user) to make a lot of trust related decisions

because that would destroy any attempt at user

friendliness. For example, the user may not be

informed enough to make sound decisions. Thus,

establishing trust is quite a complex task with many

optional actions to take. Rather trust should be

managed automatically following a high level policy

established by the trustor, for example a software

component or the user of a component software

platform. We call such trust management

autonomic.

Autonomic trust management concerns trust

management in an autonomic processing way with

regard to evidence collection, trust evaluation, and

trust (re-)establishment and control. We need a

proper mechanism to support autonomic trust

management not only on trust establishment, but

also on trust sustaining. This is important for a

component software platform that should support

trustworthy downloading and executing of the

software components. We develop a trustworthy

middleware architecture that can manage trust in an

autonomic way through adopting a number of

algorithms for trust assessment and maintenance

with regard to software component download and

execution.

2 Trust Issues of Component

Software
In mapping trust to the component software system

we can categorize trust into two aspects: trust in the

component, and trust in a composition of

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 124

components. For the component-centered aspect we

must consider trust at several decision points: at

download time and during execution. At a

component download time, we need to consider

whether a software provider can be trusted to offer a

component. Furthermore, we need to predict

whether the component is trustworthy for

installation. More necessarily, when the component

is executed, we have to ensure it can cooperate well

with other components and the system provides

expected performance and quality. The trust

relationship between system entities changes during

the above procedure.

When discussing a component software system,

the execution of components in relation to other

entities of the system needs to be taken into account.

Even though the component is trustworthy in

isolation, the new joined component could cause

problems because it will share system resources with

others. This may impact the trustworthiness of the

whole system. Consequently, the system needs

mechanisms to control its performance, and to

ensure its trustworthiness even if internal and

external environment changes. Additionally, some

applications (e.g. a health care service) need special

support for trust management because they have

high priority requirements, whereas other

applications (e.g. games), while exhibiting similar

functionality (e.g. a network connection) will not

have the same priority. Therefore, system-level

trustworthiness is dependent on the application

domain. So the system needs a trust management

framework that supports different trust requirements

for the same software components, depending on the

context they are used.

3 Trust4All Architecture
The architecture of the component software system

consists of layered structure: an application layer

that provides features to a user; a component-based

middleware layer that provides functionality to

applications; and, a platform layer that provides

access to lower-level hardware. Using components

to construct the middleware layer divides this layer

into two sub-layers: a component sub-layer that

contains a number of executable components and a

runtime environment (RE) sub-layer that supports

component development.

The component runtime supporting frameworks

also exist at the RE sub-layer. They provide

functionalities for supporting component properties

and for managing components. These frameworks

also impose constraints on the components, with

regard to mandatory interfaces, associated metadata

etc. The runtime environment consists of a

component framework that treats DLL (Dynamic

Link Library)-like components. It provides a

system-level management of the component

configuration inside a device. Each component

contains services that are executed and used by

applications. The services have interactions with

other services; they consume resources; and, they

have metadata attached. The trust model of the

software component is one kind of the metadata. It

indicates required resources for providing specified

performance, the trust priority level and composition

rules for composing this model with other trust

models [1].

Some frameworks in the runtime environment

have to be supported with platform functionality.

For example, for a resource framework, support for

resource usage accounting and enforcement is

required from the platform layer. In terms of trust

management, the platform needs to provide security

mechanisms, such as access control, memory

protection and encryption/decryption. In this case

the security framework offers functionalities for the

use of security mechanisms, provided by the

platform, to requests raised by a trust management

framework in order to develop and maintain a secure

system. The platform layer also provides trusted

computing support on the upper layers [2].

Runtime Environment Sub-Layer

Platform Layer

Component Framework

Download Framework
Execution Framework

Trust Management Framework

Resource Framework

request & decision request & decision

access control

& protection

Request & decision

resource management

monitor & decision

Component Sub- Layer

request & response

System Framework

Security Framework

request & decision

Request & decision

Application Layer

uses

Figure 1: Relationships among trust

framework and other frameworks

Figure 1 describes interactions among different

functional blocks inside the running environment

sub-layer. Placing trust management inside this

architecture means linking the trust management

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 125

framework with other frameworks responsible for

the component management (including download),

the security management, the system management

and the resource management.

The trust management framework is responsible

for the assessment on trust relationships and for

automatically selecting suitable trust control

mechanisms, system performance monitoring and

autonomic trust management. The download

framework requests the trust management

framework for trust assessment about components to

decide if to download a component and which kind

of mechanisms should be applied to this component.

When a component service needs cooperation with

other components’ services, the execution

framework will be involved, but the execution

framework will firstly request the trust management

framework for decision. The system framework

takes care of system configurations related to the

components. Similarly, the trust management

framework controls the security framework, to

ensure that it applies the proper security mechanisms

to maintain a trustworthy system. The trust

management framework is located at the core of the

runtime environment sub-layer. It monitors the

system performance and instructs the resource

framework to assign suitable resources to different

processes. This allows the trust management

framework to shut down any misbehaving

component, and to gather evidence on the

trustworthiness of a system entity. So briefly, the

trust management framework acts like a critical

system manager, ensuring that the system conforms

to its trust policies.

4 Autonomic Trust Management for

Component Software Platform
As defined in [3], trust management is concerned

with collecting the information required to make a

trust relationship decision; evaluating the criteria

related to the trust relationship as well as monitoring

and re-evaluating existing trust relationships; and

automating the process. We think that this concept

needs to be extended in order to automatically

control and ensure trust in a dynamically changed

software platform. We employ autonomic trust

management, which includes the following four

aspects:

• Trust establishment: the process for establishing

a trust relationship between a trustor and a

trustee.

• Trust monitoring: the trustor or its delegate

monitors the behaviour of the trustee. The

monitoring process aims to collect useful

evidence for trust assessment.

• Trust assessment: the process for evaluating the

trustworthiness of the trustee by the trustor or its

delegate with respect to specified criteria or

policy. The trustor assesses the current trust

relationship and decides if this relationship has

changed.

• Trust control and re-establishment: if the trust

relationship has changed, the trustor will find

reasons and make a decision if and which

measures should be taken in order to control or

re-establish the trust relationship.

4.1 Factors related to trust

Figure 2: Factors related to trust

We consider a component software platform which

is composed of a number of entities, e.g. a

component (composition of components), an

application, a sub-system and the whole platform

system. The trustworthiness of a platform entity

depends on a number of quality attributes of this

entity. The quality attributes can be the entity’s trust

properties (e.g. security, availability and reliability)

and recommendations or reputations with regard to

this entity. The decision or assessment of trust is

conducted based on the trustor’s (e.g. a platform

user or his/her delegate) subjective criteria or

policies and the trustee entity’s quality attributes, as

well as influenced by context information. Context

includes any information that can be used to

characterize the situation of the involved entities.

The quality attributes of the platform entities can be

controlled or improved by applying a number of

control modes. Particularly, a control mode contains

a number of control mechanisms or operations, e.g.

encryption, authentication, hash code based integrity

check, access control mechanisms, duplication of

process, man-in-middle solution for improving

availability, etc. It can be treated as a special

configuration of trust management that can be

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 126

provided by the system. The relationships of those

factors related to the trustworthiness of a platform

entity are illustrated in Figure 2.

4.2 A procedure of autonomic trust

management
Based on the above understanding, we propose a

procedure to conduct autonomic trust management

in the component software platform targeting at a

trustee entity specified by a trustor entity, as shown

in Figure 3.

Figure 3: Autonomic trust management procedure at

runtime

Trust control mode prediction is a mechanism to

anticipate the performance or feasibility of applying

some control modes before taking a concrete action.

It predicts the trust value supposed that some control

modes are applied before the decision to initiate

those modes is made. Trust control mode selection is

a mechanism to select the most suitable trust control

modes based on the prediction results.

For a registered trustor at the trust management

framework, the trustworthiness of its specified

trustee can be predicted regarding various control

modes supported by the system. Based on the

prediction results, a suitable set of control modes

could be selected to establish the trust relationship

between the trustor and the trustee. Further, a

runtime trust assessment mechanism is triggered to

evaluate the trustworthiness of the trustee through

monitoring its behavior based on the instruction of

the trustor’s policies, as described in [1]. According

to the runtime trust assessment results in the

underlying context, the system conducts trust control

model adjustment in order to reflect the real system

situation if the assessed trustworthiness value is

below an expected threshold. This threshold is

generally set by the trustor to express its real

expectation on the assessment. Then, the system

repeats the procedure. The context-aware or

situation-aware adaptability of the trust control

model is crucial to re-select suitable control modes

in order to fulfill autonomic trust management.

4.3 A trust control model
We developed a trust control model based on Fuzzy

Cognitive Map to support autonomic trust

management [4, 5]. It is a signed directed graph with

feedback, consisting of nodes and weighted arcs.

Nodes of the graph are connected by signed and

weighted arcs representing the causal relationships

that exist between the nodes. There are three layers

of nodes in the graph. The node in the top layer is

the trustworthiness of the platform entity. The nodes

located in the middle layer are the quality attributes

of the entity, which have direct influence on the

entity’s trustworthiness. The nodes at the bottom

layer are control modes that could be supported and

applied inside the system. These control modes can

control and thus improve the quality attributes.

Therefore, they have indirect influence on the

trustworthiness of the entity.

Figure 4: An example of trust control model

An example of this model is shown in Figure 4.

The trustworthiness of the trustee entity is

influenced by three quality attributes:
1

QA -

Security;
2

QA - Availability;
3

QA - Reliability, with

important rates 4.0
1

=w , 3.0
2

=w , and 3.0
3

=w ,

respectively. There are three control modes that

could be provided by the system:

•
1

C : security mode 1 with a strong encryption

service for encrypting data, but medium negative

influence on availability.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 127

•
2

C : security mode 2 with a light encryption

service for encrypting data and light negative

influence on availability.

•
3

C : fault management mode with positive

improvement on availability and reliability.

The influence factors of each control mode to the

quality attributes are specified by the arc weights.

The values in the square boxes are initial values of

the concept nodes. In practice, the initial value can

be set as asserted one or expected one, which can be

specified in the trustor’s policy profile.

4.4 Algorithms applied for autonomic trust

management
There are a number of algorithms adopted by the

trust management framework for autonomic trust

management. For details, refer to [1, 4, 5]

- Trust prediction for component software

downloading and execution

Trustworthiness prediction is one of important issues

that should be considered with regard to trust

management of component software. The

trustworthiness of a component should be predicted

before initiating a concrete action, and this

prediction should be comprehensive regarding

multiple factors that could influence trust. We

proposed two algorithms to predict trustworthiness

for software components downloading and

execution. The methodology is based on a trust

model, which indicates the component’s asserted

performance and requirements for achieving the

performance. Through evaluating the related trust

models, the software component’s reputation and the

component software platform’s competence, the

algorithms can predict the trustworthiness of the

software components. The prediction result is

significant to determine whether to initiate the

component downloading or start the execution of the

component services. It also helps in locating system

resources according to the trust priority level in the

case of any conflict [12].

- Trust assessment at runtime

We develop a formal trust model to specify, evaluate

and set up trust relationships amongst system

entities. Based on this model, we apply a simplified

scheme of the Subjective Logic to conduct runtime

trust assessment based on observation [1].

- Control mode prediction and selection
The trust control mode prediction is a mechanism to

anticipate the performance or feasibility of some

control modes supposed that those modes are

applied before the decision to initiate them is made.

We developed an algorithm based on the trust

control model to conduct the trust control mode

prediction as described in [4]. We further developed

another algorithm in order to select the most suitable

control modes based on the above prediction results.

In the component software platform, the control

mode prediction and selection are important

functionalities with regard to the automatic

processing of trust management [5].

- Adaptive trust control model adjustment

It is important for the trust control model to reflect

the real system situation and context precisely. The

influencing factors of each control mode should be

context-aware. The trust control model should be

dynamically maintained and optimized in order to

reflect the real system situation. Thereby, it is

sensitive to indicate the influence of each control

mode on different quality attributes in a dynamically

changed context. For example, when some malicious

behaviors or attacks happen, the currently applied

control modes can be found not feasible based on

trust assessment. In this case, the influencing factors

of the applied control modes should be adjusted in

order to reflect the real system situation. Then, the

system can automatically re-predict and re-select a

set of new control modes in order to ensure the

trustworthiness. In this way, the system can avoid

using the attacked or useless trust control modes in a

special context. Therefore, an adaptive trust control

model is important for supporting autonomic trust

management for the component software platform.

We developed a couple of schemes to adaptively

adjust the trust control model in order to achieve the

above purpose [5].

5 Related Work
A number of trusted computing and management

work have been conducted in the literature and

industry, which mostly focus on some specific

aspects of trust. For example, TCG (Trusted

Computing Group) aims to build up a trusted

computing device on the basis of a secure hardware

chip [2]. Some of trust management systems focus

on protocols for establishing trust in a particular

context, generally related to security requirements.

Others make use of a trust policy language to allow

the trustor to specify the criteria for a trustee to be

considered trustworthy [3]. However, the focus on

the security aspect of trust tends to assume that the

other non-functional requirements [6], such as

availability and reliability, have already been

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 128

addressed. In addition, TCG based trusted

computing solution can not handle the runtime trust

management issues of component software.

Recently, many mechanisms and methodologies

are developed for supporting trustworthy

communications and collaborations among

computing nodes in distributed systems [7-9]. These

methodologies are based on digital modeling of trust

for trust evaluation and management. However,

most of existing solutions focus on the evaluation of

trust, whilst they lack a proposal regarding how to

manage trust based on the evaluation result. They

generally ignore the influence of trust control

mechanisms on trustworthiness. We found that these

methods are not feasible for supporting the

trustworthiness of a device software platform.

Regarding software engineering, trust has been

recognized as an important factor for the component

software platform. A couple of interesting models

have been proposed to ensure the quality of

component services at runtime and protect the users

[10, 11]. However, we found that the trust model

proposed in [10] mainly focuses on the runtime

component configuration support, while the model

in [11] aims to prevent that a component user sends

wrong reports resulting in a bad trust value of the

component, especially at component download time.

The on-going TrustSoft project aims to study a

holistic approach to software trustworthiness

through certifying multiple quality attributes of the

software [13]. We argue that trust can be controlled

according to its prediction or assessment result.

Special control modes can be applied into the

software platform in order to ensure a trustworthy

system in an autonomic approach.

6 Conclusions
In this article, we summarized our results towards

autonomic trust management for the component

software platform. Our main contributions include

that we developed several trust models to specify,

predict, assessment, set up and maintain the trust

relationships that exist among system entities for the

component software platform. We further design an

autonomic trust management architecture that adopts

a number of algorithms for trust assessment and

maintenance during component download and

execution. These algorithms make use of recent

advances in Subjective Logic and Fuzzy Cognitive

Map to ensure the management of trust within the

component software platform in an autonomic way.

For future work, we will further study the

performance of the algorithms towards practical use

of our results.

References:

[1] Z. Yan, R. MacLaverty, Autonomic Trust

Management in a Component Based Software

System, ATC’06, LNCS vol. 4158/2006, pp. 279-

292, China, Sept. 2006.

[2] Trusted Computing Group (TCG), TPM

Specification, version 1.2, 2003.

https://www.trustedcomputinggroup.org/specs/TPM/

[3] T. Grandison, M. Sloman, A Survey of Trust in

Internet Applications, IEEE Communications and

Survey, Forth Quarter, 3(4), pp. 2–16, 2000.

[4] Z. Yan, A Methodology to Predict and Select

Control Modes for a Trustworthy Platform, WSEAS

Transactions on Computer, Issue 3, Vol. 6, pp. 471-

477, March 2007.

[5] Z. Yan, C. Prehofer, An Adaptive Trust Control

Model for a Trustworthy Component Software

Platform, ATC’07, LNCS, Springer, July 2007.

[6] S. Banerjee, C. A. Mattmann, N. Medvidovic,

L. Golubchik, Leveraging Architectural Models to

Inject Trust into Software Systems, ACM SIGSOFT

Software Engineering Notes, Proceedings of the

2005 workshop on software engineering for secure

systems—building trustworthy applications, Volume

30, Issue 4.

[7] Z. Zhang, X. Wang, Y. Wang, A P2P Global

Trust Model Based on Recommendation,

Proceedings of 2005 International Conference on

Machine Learning and Cybernetics, Vol. 7, Aug.

2005, pp.3975 – 3980.

[8] C. Lin, V. Varadharajan, Y. Wang, V. Pruthi,

Enhancing Grid Security with Trust Management,

Proceedings of IEEE International Conference on

Services Computing (SCC 2004), Sept. 2004, pp.

303 – 310.

[9] Y. Sun, W. Yu, Z. Han, K.J.R. Liu, Information

Theoretic Framework of Trust Modeling and

Evaluation for Ad Hoc Networks, IEEE Journal on

Selected Area in Communications, Vol. 24, Issue 2,

Feb. 2006, pp. 305 – 317.

[10] M. Zhou, H. Mei, L. Zhang, A Multi-Property

Trust Model for Reconfiguring Component

Software, QAIC’05, pp. 142 – 149.

[11] P. Herrmann, Trust-Based Protection of

Software Component Users and Designers. iTrust

2003, Crete, Greece, May 2003.

[12] Z. Yan, Predicting Trustworthiness for

Component Software, IEEE SecPerU’07, July, 2007.

[13] W. Hasselbring, R. Reussner, Toward

Trustworthy Software Systems, IEEE Computer,

Volume 39, Issue 4, April 2006, pp. 91 – 92.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 129

