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Abstract: Metamodeling is a popular method to apply software modeling. A metamodel acts as set of rule for its
instantiation, the model. The instantiation mechanism, originally restricted to two-layers, is more and more often
generalized to n-layer. One of the most important issue in supporting n-layer instantiation in metamodeling is to
create and handle n-layer attributes. The paper presents the N-layer Attribute Algebra, the formal description of
our n-layer attribute structure and the transformation used in instantiation.

Key–Words: Metamodeling, N-layer, Attribute, Formalism, Abstract State Machines

1 Introduction

Using metamodels is a well accepted method both in
creating visual languages, and reusing existing do-
mains by modifying the metamodel. Models are
instantiations of the appropriate metamodel, which
means that a metamodel defines the topology and the
attribute structure of their models. The issues of two-
layer instantiation can be divided into two groups: the
issues related to topological rules (e.g. the instantia-
tion of the association in the UML class diagram [1]
as links in the UML object diagram), and the issues
of attribute-related instantiation rules (e.g. the UML
class attributes can have values in the object diagram).
In the two-layer case, the solution to these issues have
been standardized by OMG [2]. However, extending
the two-layer instantiation to n-layer is a natural need.
This extension generates a couple of new problems to
solve. The topological problems have been discussed
and solved [4], but extending the attribute instantia-
tion concepts to an n-layer instantiation mechanism is
an open issue.

The paper presents the result of our research in
creating a generic attribute structure that is able to
describe the attributes of visual languages in n-layer
metamodeling. The paper [3] has presented the im-
plementation details of our research, thus, this pa-
per focuses on the theoretical aspects of the research.
The paper elaborates a mathematical formalism to
describe the attribute structure and the instantiation
method. The formal description is referred to as N-
layer Attribute Algebra.

Section 2 introduces Abstract State Machines,
which is the formalism technique we used in creat-

ing our algebra. Section 3 presents the algebra itself,
while Section elaborates the instantiation transforma-
tion 4. In Section 5 we conclude and summarize the
paper.

2 Backgrounds
In [5], ASMs are introduced as follows. ASMs are
finite sets of transition rules of the form

if Condition then Updates

which transform abstract states. Where Condition (re-
ferred to as guard) under which a rule is applied, is
an arbitrary predicate logic formula without free vari-
ables. The formula of Condition evaluates to true or
false.

Updates is a infinite set of assignments in the
form of

f(t1, . . . , tn) := t,

whose execution is understood as changing (or defin-
ing if there was not defined before) the value of the
occurring function f at the given arguments.

The notion of ASM states is the classical notion of
mathematical structures where data come as abstract
objects, i.e., as elements of sets (domains, universes,
one for each category of data) which are equipped
with basic operations (partial functions) and predi-
cates (attributes or relations).

The notion of ASM run is the classical notion of
computation in transition systems. An ASM computa-
tion step in a given state consists of executing simulta-
neously all updates of all transition rules whose guard
is true in the state, if these updates are consistent. A
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set of updates is called consistent if it contains no pair
of updates with the same location, e.g. with the same
parameter set. For the evaluation of terms and for-
mulas in an ASM state, the standard interpretation of
function symbols by the corresponding functions in
that state is used.

Simultaneous execution of an ASM rule R for
each x satisfying a given condition ϕ:

forall x with ϕ R,

where ϕ is a Boolean-valued expression and R is a
rule. We freely use abbreviations, such as where, let,
if then else, case and similar standard notations which
are easily reducible to the basic definitions above.

A priori no restriction is imposed either on the
abstraction level or on the complexity or on the means
of the function definitions used to compute the argu-
ments and the new value denoted by ti, t in function
updates. The major distinction made in this connec-
tion for a given ASM M is that between static func-
tions which never change during any run of M and
dynamic ones which typically do change as a conse-
quence of updates by M or by the environment. The
dynamic functions are further divided into four sub-
classes. Controlled functions are dynamic functions
which can directly be updated by and only by the
rules of M. Monitored functions are dynamic func-
tions which can directly be updated by and only by the
environment. Interaction or shared functions are dy-
namic functions which can directly updated by rules
of M and by the environment. Derived functions are
dynamic functions which cannot be directly updated
either by M or by the environment, but are never-
theless dynamic because they are defined in terms of
static and dynamic functions.

2.1 The mathematical definition of ASM

In an ASM state, data is available as abstract ele-
ments of domains which are equipped with basic oper-
ations represented by functions. Relations are treated
as Boolean-valued functions and view domains as
characteristic functions, defined on the superuniverse
which represents the union of all domains.

Definition 1 A vocabulary (also called signature) Σ
is a finite collection of function names. Each func-
tion name f has an arity, which is a non-negative in-
teger representing the number of arguments the func-
tion takes. Function names can be static or dynamic.
Nullary function names are often called constants; but
the interpretation of dynamic nullary functions corre-
sponds to the variables of programming. Every ASM
vocabulary is assumed to contain the static constants
undef, True and False.

Definition 2 A state A of the vocabulary Σ is a non-
empty set X , together with interpretation of the func-
tion names of Σ, where X means the superuniverse of
A . If f is an n-ary function name of Σ, then its in-
terpretation fA is a function from Xn into X; if c is a
constant of Σ, then its interpretation cA is an element
of X . The superuniverse X of the state A is denoted
by |A|.

The elements of the state are the elements of the
superuniverse of the state and according to the defini-
tion, the parameters of the functions are also elements
of the superuniverse.

Definition 3 An abstract state machine M consists of
a vocabulary Σ, an initial state A for Σ, a rule def-
inition for each rule name, and a distinguished rule
name called the main rule name of the machine.

3 The N-layer Attribute Algebra
N-layer Attribute Algebra represents the attributes of
a model item in a tree structure, where the root of the
tree is the model item itself. All model items and at-
tributes have a unique identifier (ID) in order to make
the identification and reference handling simpler.

We represent the current attribute configuration of
a model item using shared functions. The value of
the functions an changed either by the algebra itself,
or by the environment of the algebra (for example by
the user). A state of the algebra represent an attribute
configuration, namely a concrete set of parameter set-
value pairs for the functions. For example, there is a
state S1, in which we have a model item m1 with no
attributes defined. If a new attribute is defined or an
old attribute is modified/deleted, then the value of the
functions and the current state of the algebra changes.
A possible next state of S1 is S2, which contains the
same model item, but in this case m1 has an attribute
a1.

The function Meta(ID) returns the meta
item/attribute of the model item/attribute obtained
as parameter. The value of the function changes
usually when a new model item/attribute is created.
The function IsAttribute(ID) is used to differen-
tiate between attribute and model item IDs, it re-
turns true, if the parameter is the ID of an attribute.
The function Name(ID) results in the name of
the model item, or attribute retrieved as parameter.
The function Root(ID) obtains the root of the at-
tribute tree, namely the model item. The function
Attribute(ID,N, I) is used to obtain the value of an
attribute. The first parameter selects the model item,
or the attribute (p) which is the parent of the attribute
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we are trying to find. Then, the function collects chil-
dren nodes of p that has the name defined in the sec-
ond parameter. The third parameter selects the Ith

element from this list. If p cannot be found, or it does
not have the children requested, the function returns
undef .

Definition 4 The vocabulary OCLASM of the
OCLASM formalism is assumed to contain the fol-
lowing characteristic functions (arities are denoted
by dashes): Meta/1, IsAttribute/1, Name/1, Root/1,
Attribute/3.

Definition 5 The superuniverse |A| of a state A of
the N-layer Attribute Algebra is the union of four uni-
verses:

- UBool containing logical values {true/false}

- UNumber containing ration numbers {Q}

- UString containing character sequences of finite
length

- UID containing all the possible IDs.

3.1 Valid and Invalid Models

The N-layer Attribute Algebra distinguish valid and
invalid models, where checking of validity is based on
formulas describing different properties of the model
(the formulas are shown at the top of the next page).
When external systems are changing the attribute tree
using the functions of the algebra, these formulas are
automatically re-checked.

In order to simplify the definition of the formu-
las, a helper function (ϕIsUnique(ID,Name)) is in-
troduced. The function ϕIsUnique(ID,Name) shows
whether the Name attribute is unique among the
child attributes of the model item/ parent attribute
defined by ID. Using this helper function the fol-
lowing properties can be defined: (i) each model
item has a unique InstanceName attribute, (ii) each
attribute with the name ’Attribute’ has Name, Min-
Mul, MaxMul and Type children; these children are
unique, (iii) two Attribute definitions with the same
Name cannot exist (iv) each attribute with the name
’ComplexType’ has a Name child and one ore more
Attribute children,(v) two complex type definitions
with the same Name cannot exist, (vi) Attributes and
ComplexTypes cannot use the reserved words of the
algebra as Name. Valid models are models fulfilling
all six conditions.

4 The Transformation
In order to solve the issues of n-layer attribute han-
dling, it is not enough to create an attribute structure,
but an instantiation transformation is required as
well. The instantiation transformation is described
by a rule of the algebra. When creating a new model
item, then this rule is used to initialize the attribute
structure of the item according to the attributes
defined in the metamodel. To simplify the definition
of the instantiation rule, we define helper functions as
follows:

GetAttributes(P ) = {∀ID : ∃I : ID <> undef ∧
ID = Attribute(P, ‘Attribute‘, I)}

ChildCounter(P,N) = I1 :
Attribute(P,N, I1) <> undef ∧
(@I2 : I2 > I1 ∧ Attribute(P,N, I2) <> undef)

Add(P,N) = ID : {ID = new UID ∧
IsAttribute(ID) = true ∧

Attribute(P,N, ChildCounter(P,N) + 1) := ID}

ComplexAttribute(A) = Attribute(A,′ Type′, 0) in
{‘Bool‘, ‘Number‘, ‘String‘, ‘ID‘}

GetComplexType(A,N) = Attribute(Attribute(
Root(A), ‘ComplexType‘, 0), N, 0)

The function GetAttributes obtains the children
of the selected model item/attribute P , with the name
’Attribute’. The function ChildCounter counts how
many children the selected parent P has with the
given name N . The function Add creates a new
child attribute for P in the attribute tree, where the
name of the new attribute is set to N . The func-
tion ComplexAttribute is used to check whether
an attribute is of the simple type. The function
GetComplexType retrieves the first ComplexType,
which is defined in the model item Root(A) and have
the name N .

The first parameter of the rule
TransformAttributes is the local root, the at-
tribute, or model item whose children we want to
process. The second parameters is the meta item, or
attribute of this local root.

Firstly, if the local root is a model item, then the
name of the model item is set to InstanceName at-
tribute of the metamodel item. Moreover, an empty
InstanceName attribute is added to the model item
automatically in order to obey the rules of valid mod-
els.

In the next step, the list of Attributes are tra-
versed and processed one-by-one. The current at-
tribute definition in the metamodel is selected by A.
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ϕIsUnique(ID,Name) =


true, if ∃I1 ∧ @I2 : Attribute(ID,Name, I1) <> undef

∧ Attribute(ID,Name, I2) <> undef ∧ I1 <> I2

false, otherwise

ϕInstName =
{

true, if ∀ID : if(¬IsAttribute(ID)) → ϕIsUnique(ID,′ InstanceName′)
false, otherwise

ϕAttr =


true, if ∀ID : if(Name(ID) =′ Attribute′) → (ϕIsUnique(ID,′ Name′) ∧

ϕIsUnique(ID,′ MinMul′) ∧ ϕIsUnique(ID,′ MaxMul′)
∧ ϕIsUnique(ID,′ Type′))

false, otherwise

ϕAttrName =


true, if ∀ID1 : if(Name(ID1) =′ Attribute′) → (@ID2 :

Name(ID2) =′ Attribute′ ∧ ID1 <> ID2

Attribute(ID1,
′ Name′, 0) = Attribute(ID2,

′ Name′, 0))
false, otherwise

ϕCplxType =


true, if ∀ID : if(Name(ID) =′ ComplexType′) →

(ϕIsUnique(ID,′ Name′) ∧
(∃Idx : Attribute(ID,′ Attribute′, Idx) <> undef))

false, otherwise

ϕTypeName =


true, if ∀ID1 : if(Name(ID1) =′ ComplexType′) → (@ID2 :

Name(ID2) =′ ComplexType′ ∧ ID1 <> ID2

Attribute(ID1,
′ Name′, 0) = Attribute(ID2,

′ Name′, 0))
false, otherwise

ϕReservedNames =


true, if ∀ID : if(Name(ID)in{′Attribute′,′ ComplexType′} →

(Attribute(ID,′ Name′, 0) /∈
{′InstanceName′,′ Attribute′,′ ComplexType′})

false, otherwise

ϕV alidModel = ϕInstName ∧ ϕAttr ∧ ϕAttrName ∧ ϕCplxType ∧ ϕTypeName ∧ ϕReservedNames

Algorithm 1 The TransformAttributes rule
1: rule TransformAttributes(ID, IDMeta)
2: if (¬ ISATTRIBUTE(ID)) then
3: NAME(ID) =

ATTRIBUTE(IDMeta,’InstanceName’,0)
ADD(ID,’InstanceName’)

4: for all A in GETATTRIBUTES(IDMeta) do
5: N = ATTRIBUTE(A,’Name’,0)
6: for i= 0 TOATTRIBUTE(A,’MinMul’,0) do
7: Child= ADD(ID,N )
8: META(Child)= A
9: if COMPLEXATTRIBUTE(A) then

10: TRANSFORMATTRIBUTES(
GETCOMPLEXTYPE(A),Child)

The rule creates attributes (Child) according to the

minimum multiplicity (’MinMul’) property of A.
Note that the number of descendant levels of an

attribute in the attribute tree is not limited by the al-
gebra. The children of an attribute can have children
as well. For example, the attribute a1 is of complex
type c1. C1 has two sub-attributes a2 and a3. N-layer
Attribute Algebra does not limit nesting of complex
types, the type of a2 or a3 can be a complex type as
well. In the instantiated model, attributes created from
a1 have two children attributes as defined in (a2, a3)
and they can have grandchildren or other descendants
as well. Therefore, if the type defined in A is a com-
plex type, then the rule processes the definition of the
type recursively.

The presented transformation rule can create a
basic, initial and valid attribute structure for model
items. Note that this attribute structure can be mod-
ified later both by external systems (representing for
example the user), or by other, internal algorithms as
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long as the formula ϕV alidModel remains true.
UML class models have an instantiation defi-

nition standard, which is applicable only to class
diagrams. In case of UML, we cannot use the
same instantiation in class diagrams and for exam-
ple in statechart diagrams. In contrast, the rule
TransformAttributes can be used in a transparent
way between modeling layers. It does not need any
special information, or property of the metamodel in
order to be applied. The only restriction to the rule
is that it can process only valid metamodels, where
validity is defined by the ϕV alidModel formula.

4.1 Re-Instantiated attributes

There are cases, when an attribute is defined on the
metamodel level, it is mainly used on the model level,
but it is also required on the instantiation level of the
model. This is the case for example with UML class
diagram - object diagram relationship. The struc-
ture of class diagrams is defined in MetaClass model.
This model defines for example that classes can have
class attributes and operations. An instantiation of the
MetaClass model is a class diagram. In class dia-
grams, we can have classes with class attributes de-
fined. For example, the class C1 has a class attribute
with string type and the attribute name ’MyVar’. The
instantiation of class diagrams produces object dia-
grams. An instantiation of C1 is the object diagram
O1. Here, we should be able to set the value of ’My-
Var’. Recall that MyVar was defined in C1, but the
structure of class attributes originally came from the
MetaClass model. In other words, we have defined the
structure of an attribute on the nth level, we have set
some properties of the attribute on the (n+1)th level,
but we need the attribute on the (n+2)th level as well.
This requirement is referred to as re-instantiation of
an attribute.

The transformation rule TranformAttributes
does not support re-instantiation. It processes only
the Attributes of the selected metamodel. In order
to support re-instantiation, the rule must be extended.
We use a helper function GetChildren to simplify to
extend the transformation rule.

GetChildren(P ) = {∀ID : ∃I,N : ID <> undef ∧
ID = Attribute(P,N, I)}

The main difference between
TransformAttributes and its improved ver-
sion TransformAttributes2 is that two new
children (ReInstantiate and ReInstantiationName) are
added to each attribute having complex type. Using
the example cited earlier, MetaClass model defines an
Attribute with a Name tag ’ClassAttribute’, where
the Type tag of the attribute is ’ClassAttributeType’.

Moreover, MetaClass has a ComplexType with a
Name tag ’ClassAttributeType’ (Fig. 1).

Figure 1: Attribute tree example: MetaClass

In C1, these attributes are instantiated (Fig. 2).
The result is a ClassAttribute attribute, which has
several children, such as ’Visibility’ or ’Attribute-
Type’. The rule TransformAttributes2 adds two
children (ReInstantiate and ReInstantiationName) au-
tomatically to ClassAttribute. Moreover, note that
ϕV alidModel allows to add Attribute children to an ar-
bitrary complex attribute. These additional Attribute
children are useful if the original attribute definition
(ClassAttribute in this case) must be extended in or-
der to use on the re-instantiated level. This is the case
with object diagram O1 that requires the ability to set
the value of class attributes.

Figure 2: Attribute tree example: Class diagram

The boolean value ReInstantiate on the nth mod-
eling level indicates whether the attribute should take
part in instantiation to the (n + 1)th level. In the ex-
ample, if we set ReInstantiate in ClassAttribute to
true, the attribute definition will be available in O1.
Since C1 can have more than one ClassAttribute,
it is essential to distinguish them in O1. Differ-
ent ClassAttributes are transformed to attributes
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with different name, where the name is defined
in ReInstantiationName. Original components of
ClassAttribute are copied to the re-instantiated level
O1 (Fig. 3).

Figure 3: Attribute tree example: Object diagram

Algorithm 2 The TransformAttributes2 rule
1: rule TransformAttributes2(ID, IDMeta)
2: if (¬ ISATTRIBUTE(ID)) then
3: NAME(ID) =

ATTRIBUTE(IDMeta,’InstanceName’,0)
4: ADD(ID,’InstanceName’)
5: for all A in GETCHILDREN(IDMeta) do
6: if Name(A)=’Attribute’) then
7: N = ATTRIBUTE(A,’Name’,0)
8: for i= 0 TO ATTRIBUTE(A,’MinMul’,0) do
9: Child= ADD(ID,N )

10: if COMPLEXATTRIBUTE(A) then
11: TRANSFORMATTRIBUTES(

GETCOMPLEXTYPE(A),Child)
12: ADD(Child,’ReInstantiate’)
13: ADD(Child,’ReInstantiationName’)
14: else
15: if (GETCHILDREN(A)<>undef ∧

Attribute(A,’ReInstantiate’)=true ∧
Attribute(A,’ReInstantiate’)<>”) then

16: Child= ADD(ID,
Attribute(A,’ReInstantiationName’))

17: for all A2 in GETCHILDREN(A) do
18: if Name(A2)<>’ReInstantiate’) ∧

Name(A2)<>’ReInstantiationName’)
then

19: Child2= ADD(Child,Name(A2))
20: TRANSFORMATTRIBUTES(

GETCOMPLEXTYPE(A2),Child2)
21: ADD(Child2,’ReInstantiate’)
22: ADD(Child2,’ReInstantiationName’)

5 Conclusion
Metamodeling is one of the most focused research
field in software modeling. Original concepts describ-
ing two-layer metamodeling structures are not flexi-
ble enough to fit the requirements of today. One of
the largest open issues in creating real n-layer meta-
modeling solutions is to define an n-layer instantia-
tion mechanism. This paper has presented a solu-
tion, the N-layer Attribute Algebra to solve this issue.
The paper introduced an attribute structure, which is
highly generic and modeling layer-transparent. The
attribute structure has been formalized using Abstract
State Machines; the definition of valid models has
been created as well. In order to show that the attribute
structure can really be used in an n-layer instantiation
chain, the paper has elaborated a transformation rule
(TransformAttributes) capable of applying the in-
stantiation. The rule has been formalized as well.
The paper has defined re-instantiated attributes using a
simple example. Re-instantiated attributes are used in
more, than two modeling layers. The instantiation rule
has been extended (TransformationAttributes2)
in order to support re-instantiated attributes as well.

The paper has presented an N-layer Attribute Al-
gebra in a formal way. The algebra has been imple-
mented in Visual Modeling and Transformation Sys-
tem (VMTS, [6]) and it has been successfully used in
several domains of interest, e.g. resource editors for
mobile phones, UML 2.0 models, feature modeling or
visual model transformation languages. Formal defi-
nitions and flexible constructs of the algebra ensures
that the solution is not only useful in VMTS, but in
any other n-layer metamodeling system as well.
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