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Abstract: The paper presents a method for the classification and identification of texture image 

regions. To compare regions, a data base with single texture images is used. The dimension of 

the reference images is greater than the analyzed region dimension. For the proper region 

recognition a decision theoretic method and two types of statistic texture feature are used. The 

first type features are the peak of grey level histogram and the texton contour pixel densities 

(edge densities) per unit of area. The second type features derive from the medium co-

occurrence matrices: contrast, energy, entropy, homogeneity, and variance. The algorithms are 

implemented in Visual C++2005 and Matlab and allows the simultaneously display of both the 

investigated regions pairs, and the euclidian distance between them. Our experimental results 

indicate the fact that the selected features which derive from medium co-occurrence matrices 

have a good discriminating power for texture classification. The results also confirm the fact 

that the distances between the similar regions are relatively small and the distances between 

regions from different textured images are relatively great.  

 

Key-words: Texture, Statistic features, Medium co-occurrence matrix, Edge densities, Image 

difference, Grey level histogram, Image classification. 

 

 

1 Introduction 
      It is very hard to define rigorously the texture 

into an image. The texture can be considered like a 

structure which is composed by many similar 

elements (patterns) named textons or texels, in 

some regular or continual relationship. 

      Texture analysis has been studied using 

various approaches, like statistical type (grey level 

co-occurrence matrices and the features extracted 

from them, autocorrelation based features, power 

spectrum, etc), and structural type. In the last case, 

the texture are composed of primitives, and an 

image description is produced by the placement of 

these primitives according to certain placement 

rules.  

      The structural approach is suitable for 

analyzing textures with more regularity in the 

placement of texture elements.  

      The statistical approach utilises features to 

characterize the stochastic properties of the 

distribution of grey levels in the image. 

      There are two important kinds of problems that 

texture analysis research attempts to solve: texture 

segmentation and texture classification. Another 

problem, texture synthesis is often used for image 

compression application. 

      The process called texture segmentation 

consists in identifying regions with similar 
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texture and separating regions with different 

texture.  

      Texture classification involves deciding what  

texture class an observed image belongs to. Thus, 

one needs to have an a priori knowledge of the 

classes to be recognized. The major focus of this 

paper is the classification process based on 

medium co-occurrence matrix features. 

      An experimental study has been conducted to 

classify some regions of textured images. With 

this end in view, the whole image is partitioned in 

four equivalent regions like in Fig.1. Different 

textured regions are compared based on minimum 

distance between measured features which are 

derived from medium co-occurrence matrices 

(contrast, energy, entropy, homogeneity, and 

variance) or by contour pixel densities.  

      Our experimental results indicate that the five 

features selected from medium co-occurrence 

matrices have a good discriminating power in 

texture classification applications. 

 

 

 

 

 

 

 

                    I1(1)                     I1(2)     

   

 

 

 

 

 

 

                    I2(1)                      I2(2)     

Fig. 1. Image regions derived from two images (I1 

and I2) with different textures. 

 

2 Statistical methods to texture 

analysis     
      The statistical approach is more useful than 

structural approach to texture analysis. The 

simplest statistical features like the mean (1) and 

standard deviation (3) can be computed indirectly 

in terms of the image histogram h.   

Thus, 
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where N = n1 n2 is the image dimension, and K is 

the number of grey levels. 

      The shape of an image histogram provides 

many clues to characterize the image, but 

sometimes it is inadequately to discriminate 

textures (it is not possible to indicate local intensity 

differences). 

      Another simple statistic features is the edge 

density per unit of area, Dene (4). The density of 

edges, detected by a local binary edge detector, can 

be used to distinguish between fine and coarse 

texture like in Fig.1. Dene can be evaluated by the 

ratio between the pixel number of extracted edges 

(which must be tinned – one pixel thickness) and 

image area (pixel number of region matrix): 
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In ecquation (4), Ne represents the number of edge 

pixels (tinned edges, with one pixel thickness) and 

A is the region area.       

      In order to characterize textured images, 

connected pixels must be analysed. For this reason, 

correlation function (5), difference image (6) in 

certain direction d =(∆x, ∆y), and co-occurrence 

matrices (9), must be considered: 
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Id(x,y) = I(x,y) – I(x+∆x , y+∆y)              (6) 

 

From histogram of difference image hd, one can 

extract the mean (7) and standard deviation (8): 
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      The most powerful statistical method to 

textured image analysis is based on features 

extracted from the Grey-Level Co-occurrence 

Matrix (GLCM), proposed by Haralick in 1973 

(Haralick 1973). GLCM is a second order 

statistical measure of image variation and it gives 

the joint probability of occurrence of grey levels of 

two pixels separated spatially by a fixed vector 

distance d=(∆x, ∆y). Smooth texture gives co-

occurrence matrix with high values along 

diagonals for small d. The range of grey level 

values within a given image determines the 

dimensions of a co-occurrence matrix. Thus, 4 bits 

grey level images give 16x16 co-occurrence 

matrices. The elements of a co-occurrence matrix 

Cd depend upon displacement d=(∆x, ∆y): 

 

Cd (i,j) = Card{((x,y),(t,v))/I(x,y) = i, I(t,v) = j,         

(x,y), (t,v) ∈N x N, (t,v) = (x+ ∆ x, y+ ∆ y)}      (9) 

 

      From a co-occurrence matrix Cd one can draw 

out some important statistical features for texture 

classification. These features, which have a good 

discriminating power, were proposed by Haralick 

(Haralick 1973, Haralick 1992): contrast (10), 

entropy (10), energy (11), homogeneity (12). The 

contrast measures the coarseness of texture. Large 

values of contrast correspond to large local 

variation of the grey level. The entropy measures 

the degree of disorder or non-homogeneity. Large 

values of entropy correspond to uniform GLCM. 

The energy is a measure of homogeneity. 

 

3 Local features derived from 

medium co-occurrence matrix  

     For each pixel we consider increasing 

(2d+1)x(2d+1) symmetric neighborhoods, d = 1, 2, 

3,...,10. Inside each neighborhood there are 8 

principal directions: 1, 2, 3, 4, 5, 6, 7, 8 (Fig. 2) 

and we evaluated the co-ocurence matrices Cd,k 

corresponding to vector distances determined by 

the central point and the neighborhood edge point 

in the k direction (k=1,2,...,8). For each 

neighborhood type, an average co-ocurence matrix 

Cd is calculated (10):  

 

Cd = 1/8(Cd,1 + Cd,2 + Cd,3 + Cd,4 + Cd,5 + Cd,6 + 

        + Cd,7 + Cd,8)  , d = 1,2,...,10                     (10) 

 

Thus, for 3x3 neighborhood, d = 1; for 5x5 

neighborhood, d = 2; for 7x7 neighborhood, d = 3; 

for 9x9 neighborhood, d = 4, and so on. 

 

   
 

Fig. 2. Principal direction for co-ocurence matrix 

calculus. 

 

In order to quantify the spatial dependence of gray 

level values, from average co-ocurence matrices 

Cd, d = 1, 2,..., 10, we calculate various textural 

features like Contrast – Cond – (11), Energy – Ened 

– (12), Entropy – Entd – (13), Homogeneity – Omod 

– (14) and Variance – Vard – (15). 
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4 Experimental results and discusion 
      For alghoritm testing and program validation 

we used two textured images I1 and I2, each 

partitioned in four regions Ii(1), Ii(2), Ii(3), Ii(4), 

i=1,2 (Fig. 3).  

 

 

 

 

 

 

 

Fig. 3. Four regions image partition. 
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In fact, the regions are 128 x 128 images whith 16 

grey levels.  

From these images we considered two regions for 

I1  image, and two regions for I2  image, Ii(1), Ii(2) 

–  Fig. 3.  

      Firstly, the analysis of the simple grey level 

histogram (Fig. 4, Fig. 5, Fig. 6, Fig. 7) 

demonstrates that the regions can be discriminated 

by the aid of the mode location and mode value 

(histogram peak) which is greater for I1(1) and 

I1(2) than for I2(1) and I2(2). Seccondly, supposing 

that the histograms are not so different, another set 

of texture features makes possible the region 

classification. Thus, we can consider the co-

occurence matrices and the features derived from 

them. Because the first and the last lines and 

columns are full with 0, one can elimine them. So 

the co-occurence matrix dimension becomes 14 x 

14 (Fig.8). 
 

           Fig. 4. Grey level histogram for I1(1). 
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           Fig. 5. Grey level histogram for I1(2). 
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      Fig. 6. Grey level histogram for I2(1). 

 

         Fig. 7. Grey level histogram for I2(2). 

 

 

Table 1. Five statistical texture derived from co-

occurence matrices. 
 
d Image Cond Ened Entd Omod Vard 

1 I1(1) 0.39 1.17 1.01 0.93 0.34 

1 I1(2) 0.60 0.81 0.96 0.84 0.46 

1 I2(1) 0.13 0.98 1.00 1.16 1.04 

1 I2(2) 0.15 0.89 0.99 1.13 1.17 

2 I1(1) 0.63 1.01 0.98 0.81 0.33 

2 I1(2) 0.88 0.73 0.93 0.75 0.45 

2 I2(1) 0.38 0.57 0.90 0.92 1.02 

2 I2(2) 0.45 0.52 0.89 0.88 1.15 

3 I1(1) 0.65 0.99 0.97 0.79 0.33 

3 I1(2) 0.89 0.72 0.92 0.73 0.45 

3 I2(1) 0.72 0.42 0.85 0.78 1.00 

3 I2(2) 0.85 0.38 0.84 0.75 1.14 

4 I1(1) 0.64 0.97 0.96 0.79 0.32 

4 I1(2) 0.87 0.70 0.91 0.73 0.44 

4 I2(1) 1.07 0.34 0.81 0.69 0.99 

4 I2(2) 1.25 0.32 0.81 0.66 1.13 

5 I1(1) 0.70 0.94 0.94 0.75 0.32 

5 I1(2) 0.95 0.68 0.89 0.70 0.44 

5 I2(1) 1.41 0.30 0.79 0.62 0.98 

5 I2(2) 1.62 0.28 0.79 0.60 1.12 

6 I1(1) 0.67 0.91 0.93 0.75 0.32 

6 I1(2) 0.90 0.67 0.88 0.70 0.43 

6 I2(1) 1.70 0.28 0.77 0.57 0.97 

6 I2(2) 1.94 0.26 0.77 0.56 1.11 

7 I1(1) 0.60 0.90 0.92 0.76 0.31 

7 I1(2) 0.78 0.66 0.87 0.72 0.42 

7 I2(1) 1.95 0.27 0.76 0.53 0.96 

7 I2(2) 2.21 0.25 0.76 0.52 1.10 

8 I1(1) 0.58 0.89 0.90 0.76 0.31 

8 I1(2) 0.78 0.64 0.86 0.71 0.42 

8 I2(1) 2.16 0.27 0.75 0.50 0.95 

8 I2(2) 2.43 0.25 0.75 0.49 1.08 

9 I1(1) 0.58 0.88 0.89 0.75 0.30 

9 I1(2) 0.78 0.63 0.84 0.70 0.41 

9 I2(1) 2.31 0.27 0.74 0.48 0.95 

9 I2(2) 2.60 0.25 0.74 0.47 1.07 

10 I1(1) 0.54 0.85 0.88 0.76 0.30 

10 I1(2) 0.75 0.62 0.83 0.70 0.41 

10 I2(1) 2.41 0.27 0.73 0.46 0.93 

10 I2(2) 2.72 0.25 0.73 0.46 1.06 
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Textural features like Cond – (8), Ened – (9), Entd 

– (10), Omod – (11), and Vard – (12) are 

calculated. The normalised results are presented in 

Table 1, for d = 1,2,...,10. 
 

 
0     0      0      0      0      0      0      0      0      0      0      0     0     0  

0     1      2      0      0      0      0      0      0      0      0      0     0     0       
0     2    255  139  13      1      0      0      0      0      0      0     0     0       

0     0    139  845  372   67     4      0      0      0      0      0     0     0       

0     0    13    372  831  376  122  11      0      0      0      0     0     0       
0     0      1    67    376  533  402  125  11      0      0      0     0     0       

0     0      0      4    122  402  519  446  125    5      0      0     0     0       

0     0      0      0     11   125  446  784  506  99      2      0     0     0       
0     0      0      0      0    11    125  506  832  499  52      0     0     0       

0     0      0      0      0      0      5    99    499  896  489  11     0     0       

0     0      0      0      0      0      0      2     52   489 1383 308   1     0       
0     0      0      0      0      0      0      0      0     11   308  767  53    0       

0     0      0      0      0      0      0      0      0       0     1    53    66    0       

0     0      0      0      0      0      0      0      0       0     0      0     0     0       

 

Fig. 8. Co-occurence matrix C1 for I2(1) image. 

 

      For the purpose of discriminated power 

evaluation of the selected features we calculated 

the euclidian distances between regions from the 

same image: D{I1(1),I1(2)}, D{I2(1),I2(2)}, and  the 

euclidian distances between regions from different 

images: D{I1(1),I2(1)}, D{I1(1),I2(2)}, 

D{I1(2),I2(1)}, D{I1(2),I2(2)}. The euclidian 

distance D{I1, I2} between two images I1 and I2 , 
which are characterized by the feature vectors 

[C1,E1,Et1,O1,V1]
T
 and [C2,E2,Et2,O2,V2]

T
 is 

expressed by the following relation: 
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where: C = Con, E = Ene, Et = Ent, O = Omo, V 

= Var. In the Table 2, the results of mentioned 

distances calculus are presented.  

From Table 2, one can observe that the distances 

between two different regions, like D{I1,I2}, are 

greater than distances between two similar regions, 

like D{I1,I1} or D{I2,I2}. In order to apreciate the 

efficiency of the presented algorithm, we analyzed 

the most unfavourable cases, namelly the 

minimum distance between two regions coming 

from different images, and the maximum distance 

between  two regions coming from the same 

image. These distances are grouped in two 

categories , for d = 1,2,…,5 and d = 6,7,…,10 

(Table 3). Thus, Dmin{I1,I2} is grater than 

max{DMax{I1,I1}, DMax{I2,I2}}, especially in large 

neighbourhood case (d=6,7,…,10). 

 

 

Table 2. Euclidian distances between different 

images 

 

d D 

{I11,I12} 

D 

{I31,I32} 

D  

{I11,I31} 

D  

{I11,I32} 

D  

{I12,I31} 

D 

{I12,I32} 

1 0,44 0,16 0,81 0,93 0,83 0,89 

2 0,40 0,16 0,87 0,98 0,79 0,86 

3 0,39 0,19 0,89 1,04 0,66 0,67 

4 0.38 0,22 1,03 1,22 0,70 0,88 

5 0,39 0,25 1.18 1,40 0,81 1,04 

6 0,36 0,27 1,40 1,65 1,06 1,31 

7 0,33 0,29 1,65 1,92 1,36 1,64 

8 0,34 0,30 1,83 2,12 1,54 1,83 

9 0,34 0,31 1,97 2,27 1,68 1,99 

10 0,34 0,34 2,09 2,42 1,79 2,13 

 

 

Table 3. Minimum and maximum distances. 

      d=1,2,…,5                           d=6,7,…,10      

 

Concluding remarks 
      Because it is considered a medium 

omnidirectional co-occurrence matrix, the 

presented algorithm is relatively insensible to 

image translation and rotation. The results confirm 

that the statistic second order features, extracted 

from these co-occurrence matrices, especially in 

the case d = 6,7,…,10, offer a good discriminating 

power in texture identification process. The main 

application of the algorithm consists in texture 

identification and classification of the regions in 

multitextured images (like images from satellite or 

images from video camera of intelligent vehicles). 

      Towards ameliorate the classification accuracy, 

a development of the recognition algorithm, 

consisting in the attachment of new textural 

features like edge point density per unit of area and 

statistical features extracted from histogram of 

difference image, is proposed. Thus, we considered 

an edge extraction algorithm, based on imge 

binarisation and logical function [11], which gives 

tinned edges. The edge densities for the analized 

regions I1(1), I1(2), I2(1), and I2(2) show that this 

Images Dmin DMax 

D{I1,I1} 0,38 0,40 

D{I2,I2} 0,16 0,25 

D{I1,I2} 0,66 1,40 

Images Dmin DMax 

D{I1,I1} 0,33 0,36 

D{I2,I2} 0,27 0,34 

D{I1,I2} 1,06 2,42 
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feature has also a good discriminating power 

(Table 4) and the combination with the previously 

second order type statistical features will give 

better results in texture classification. 

 

Table 4. Edge densities of the analyzed regions. 

 

Region Ne A Dene 

I1 (1) 5818 16384 0.3551 

I1 (2) 5820 16384 0.3552 

I2 (1) 3481 16384 0.2125 

I2 (2) 3296 16384 0.2012 
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