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Abstract: - A curve with a monotone radius of curvature distribution is considered as a fair curve in the area of 
Computer Aided Aesthetic Design (CAAD).  But no official standards have been established.  Therefore, a 
criterion for a fair curve is proposed.  A quintic NURBS curve, the first derivative of a quintic NURBS curve, 
curvature vector, curvature, and radius of curvature are expressed.  The concept of radius of curvature specification 
to modify the shape of a NURBS curve is illustrated.  The difference between the NURBS curve radius of 
curvature and the specified radius of curvature is minimized by introducing the least-squares method to modify the 
shape of the NURBS curve.  Algebraic functions such as linear, quadratic, cubic, quartic, quintic, and six degrees 
are applied to the radius of curvature distribution of the designed curve as the specified radius of curvature.  The 
radius of curvature distributions given by these six algebraic functions are considered monotone, because the 
independent variable of these algebraic functions is monotone to the corresponding dependent variable of these 
functions.  Similarity is evaluated using the radius of curvature distribution according to six algebraic functions as 
references and the radius of curvature distribution of the designed curves as matches by using correlation matching.  
Curve shape similarity evaluation is tried using an example.  Considering that a curve with a monotone variation of 
radius of curvature distribution is fair, the similarity of the designed curve to a fair curve is evaluated.  This 
measured similarity expresses fairness to the fair curve.  Using this technique, the fairness of a curve is evaluated 
by using the similarity of the radius of curvature distribution. 
   
Key-Words: - curve shape modification, fair curve, radius of curvature specification, correlation matching, fairness 
evaluation  
 
1   Introduction 
In Computer Aided Aesthetic Design (CAAD) [1], 
designers evaluate the quality of a designed curve by 
looking at its curvature or radius of curvature plots.  If 
the quality of a designed curve does not meet 
designer’s demands, they usually modify the control 
points of the curve interactively.  If the variation of the 
radius of curvature of the curve is monotone, this 
curve is assumed to be a fair curve [2].  But the 
definition of a fair curve is ambiguous and no official 
standards are given.  Therefore, in this paper we have 
tried to establish criterion for a fair curve. 
A NURBS curve, which is commonly used in the field 
of CAD･CAM and Computer Graphics, is used as an 
expression of a freeform curve.  A quadratic NURBS 
curve is used as an expression of a quadratic curve 
using its weights.  In this study, a quadratic curve is 
not used to express the shape of a curve.  Therefore, 
the weights of a NURBS curve are not used.  A cubic 
NURBS curve is widely used, but in this study, radius 
of curvature of multi segments of a NURBS curve are 

modified based on the specified radius of curvature.  
So, a smooth radius of curvature continuity is needed.  
Therefore, a quintic NURBS curve is used in this 
study. 
Positions and gradients are given to the NURBS curve 
equations and first derivative equations of the NURBS 
curve respectively.  Then, a NURBS curve is 
generated.  Afterwards, if necessary, the shape of this 
NURBS curve is modified according to the specified 
radius of curvature distribution. 
Fair curve expression and evaluation of fairness are 
described.  As a measure of curve fairness evaluation, 
radius of curvature distribution is used as an 
alternative characteristic of a curve.  Evaluation of 
whether the designed curve is fair or not is 
accomplished by comparing the designed curve to a 
curve whose radius of curvature is monotone. 
The radius of curvature distributions of six NURBS 
curves are modified to follow algebraic functions such 
as linear, quadratic, cubic, quartic, quintic, and six 
degrees to specify the radius of curvature distribution.  
Then, by introducing the correlation matching, the 
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similarities of the designed curve to these six 
predefined curves are examined.  Among these 
predefined curves, the highest similarity curve to the 
designed curve is selected as an ideal fair NURBS 
curve.  Then, the fairness of the designed curve to its 
ideal fair curve is evaluated. 
Fair curve generation algorithms related to curvature 
by modifying the control points have been published.  
These make monotone curvature [3], use a clothoidal 
curve for specifying the curvature [4], and automate a 
curve fairing algorithm for B-spline curves [5, 6].  Fair 
curve generation algorithms related to energy function 
have been published.  These are smoothing of cubic 
parametric splines by energy function [7], finding the 
unfair portion of a curve using energy function [8], 
and introducing a low-pass filter to energy function [9].  
Fair curve generation algorithms related to curvature 
by specifying curvature distribution have also been 
published [10].    
There are many related works for evaluating 
similarities of polygons in two dimensional space, 
especially in the area of image processing.  Methods 
for evaluating similarities, which are based on the 
distances of corresponding points on polygonal curves, 
have been reported [11-14].  If the distances are close, 
it will be determined that the two polygonal curves are 
similar.  Methods using Fourier descriptors for 
evaluating similar polygons have been developed and 
implemented [15, 16].  One is to retrieve the image 
files using Fourier descriptors.  The other is to classify 
the characters expressed by polygonal curves.   
Section 2 of this paper describes a quintic NURBS 
curve, the first derivative of a quintic NURBS curve, 
curvature vector, curvature, and radius of curvature.  
In section 3, generation of a quintic NURBS curve 
which passes through given point sequence and 
generation of a quintic NURBS curve using the given 
points and gradients are described.  In section 4, 
NURBS curve shape modification based on the 
specified radius of curvature is described.  Section 5 
describes correlation matching to evaluate the 
similarity of the NURBS curves.  Section 6 describes 
fair curve expression and fairness evaluation giving 
examples.  A criterion for a fair curve is proposed as 
fairness. 
2   NURBS Curve Expression 
A quintic NURBS curve is used in this study.  The 
objective of freeform curve design is to design the 
framework of surface patches.  Surface patches are 
defined as tensor products, which are bi-variate and 
normally defined by u  and v .  In other words, one 

knot sequence in u  direction, and another knot 
sequence in v  direction are defined despite the 
complexity of the surface patches.  Therefore, knot 
spacing is fixed in this study. 
A quintic NURBS curve consists of 5n -  segments 
( 6)n ³ , is composed of n  control points such as 

,0 1 n-1q ,q , q and n  weights such as 0 1 1, , , nw w w - as in 
Eq.(1). 
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where ( ) ( ),6 0,1, , 1iN t i n= -  are NURBS basis 
functions. 
     These functions are recursively defined by knot 
sequence 0 1 5, , , nt t t +  as in Eq.(2). 
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where 0,1, , 1i n= - and M = 2,3, ,6 . 
The basis functions are defined by the de Boor-Cox 
[17] recursion formulas.  If the knot vector contains a 
sufficient number of repeated knot values, then a 
division of the form ( ) ( ), 1 1/ 0 / 0i M i M iN t t t- + - - =  (for some 
i ) may be encountered during the execution of the 
recursion.  Whenever this occurs, it is assumed that 
0/0 = 0 [18].  A quintic NURBS curve with knot vector 
{ }5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6- - - - -  is expressed as in 
Eq.(3). 
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The first derivative of a quintic NURBS curve shown 
in Eq.(3) is expressed as in Eq.(4). 
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Curvature vector is expressed by Eq.(5). 
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where ( )tR  is the first derivative of a NURBS curve, 
and ( )tR  is the second derivative of a NURBS curve. 
Curvature is the magnitude of the curvature vector, 
therefore curvature is expressed as in Eq.(6). 
( ) ( )t tk = κ  

By definition, the curvature of a plane curve is 
nonnegative.  However, in many cases it is useful to 
ascribe a sign to the curve [19].  The choosing of the 
sign is commonly connected with the tangent rotation 
(in moving along the curve in the direction of the 
increasing parameter): The curvature of the curve is 
positive when its tangent rotates counter-clockwise, 
the curvature of the curve is negative when its tangent 
rotates clockwise. 
Radius of curvature is the reciprocal number of 
curvature, therefore, radius of curvature is expressed 
as in Eq.(7). 
( ) ( )
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3   Generation of a NURBS Curve 
In this section, a method to generate a quintic NURBS 
curve which passes through given points in sequence 
is shown.  Another method to generate a quintic 
NURBS curve using the given points in sequence with 
gradients is described. 
 
3.1 Generation of a Quintic NURBS Curve which 
Passes through Given Point Sequence 
Putting zero to the parameter of Eq.(3), Eq.(3) is 
expressed as Eq.(8) by defining the geometrical knot 
position corresponding to the knot of the knot vector.      

1 ( 26 66 26 )
120

= + + + +i i i+1 i+2 i+ 3 i+4R q q q q q  

( 0,1, 2,3, , 1)i m= ××× -  
Where m  is the number of the given points, and 

,0P ,1P ,2P ,3P , ,m -2 m -1P P  are the positional vectors of 
the given points to be assigned to ( 0,1,2,3, , 1)i m= × × × -iR  
in Eq.(8), and ,0q 1,q ,2q ,3q , ,m+2q m+3q  are the control 
points of a quintic NURBS curve. 
When the control points of a NURBS curve are 
calculated using Eq.(8), the number of unknowns, 
which are the positions of the control points, are four 
more than the number of equations which are 
expressed by Eq.(8).  In this case, by setting the second 
derivative of the NURBS curve to zero, and setting the 

fourth derivative of the NURBS curve to zero, 
unknown variables become known.  Therefore, the 
number of equations will be equal to the number of 
unknowns.  That is, a linear system is determined [20].  
Then a NURBS curve is generated by solving this 
determined system. 
In this study, in addition to the given point sequence, 
gradient at the given points is defined. 
Eq.(9) is applied to the gradients by setting the 
parameter of Eq.(4) as zero. 

1 ( 10 10 )
24

d
dt

= - - + +i
i i+1 i+3 i+4

R q q q q  

( 0,1, 2,3, , 1)i n= ××× -  
Where n  is the number of given gradients.  The i  
shown in Eq.(9) corresponds to the i  in Eq.(8) and is 
determined situationally.  As a magnitude of the first 
derivative, one third value of the distance of adjacent 
given points is assigned. 
The defined gradients are located at the beginning 
given point and it’s adjacent point, and at the end 
given point and it’s adjacent point in general.  In this 
case, the i  are determined as 0, 1, 2n - , 1n -  
respectively.  Using given point sequence and four 
location specified gradients, a linear system becomes 
determined.  That is, the number of unknowns is equal 
to the number of equations.  The concept of a quintic 
NURBS curve generation using the given point 
sequence and four location specified gradients are 
illustrated in Fig.1.  , , , , , ,0 1 2 3 m -2 m -1P P P P P P  are given 
points.  , ,0 1 n-2d d d , and n-1d  are the four location 
specified gradients.  
 
 
 
 
 
 
 
 
 

 
 
3.2 Generation of a Quintic NURBS Curve using 
the Given Points and Gradients 
In this sub-section, a NURBS curve generation using 
the given points with gradients is described. 
The concept of generation of a NURBS curve using 
the given points with gradients is illustrated in Fig.2. 
 
 
 

(5) 

(6) 

(7) 

(8) 

(9) 

Fig.1 Illustration for a quintic NURBS curve using the given point 
sequence and four location specified gradients 
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, , , , ,0 1 2 3 m -2 m -1P P P P P P is the given point sequence.  
, , , , , ,× × ×0 1 2 3 n-2 n-1d d d d d d are gradients assigned to the 

given points in sequence.  A NURBS curve which 
passes through the given points and has the first 
derivatives at these given points is generated.   
A NURBS curve is generated by solving Eq.(8) and 
Eq.(9) simultaneously by making m  in Eq.(8) equal to 
n  in Eq.(9).  In this case, the i  in Eq.(8) corresponds 
to the i  in Eq.(9).  If the number of given points with 
gradients is 4, the number of NURBS curve equations 
(Eq.(8)) is 4 and the number of first derivative 
equations (Eq.(9)) is 4.  As a linear system, the total 
number of equations is 8, whereas the total number of 
control points of a NURBS curve is 8.  Therefore, this 
linear system is determined.  That is, the rank of a 
coefficient matrix of a linear system is equal to the 
number of unknowns.  The solution to this linear 
system is exact. 
However, in case the number of given points with 
gradients is 3, the number of equations (Eq.(8)) which 
pass through the given points is 3, and the number of 
equations of the first derivative (Eq.(9)) is 3.  In this 
case, as a linear system, the total number of equations 
is 6, whereas the number of control points of the 
NURBS curve is 7.  That is, the number of equations is 
less than the number of unknowns.  Therefore, this 
linear system is underdetermined [21]. 
For an underdetermined system, while setting 
auxiliary function, the linear system is solved under 
the constraint condition by selecting one solution from 
infinite number of exact solutions using Lagrange's 
method of indeterminate multipliers. 
In case the number of given points with gradients is 5, 
the number of equations (Eq.(8)) is 5, and the number 
of equations of the first derivative (Eq.(9)) is 5.  In this 
case, as a linear system, the total number of equations 
is 10, whereas the number of control points of the 
NURBS curve is 9.  That is, the number of equations 
exceeds the number of unknowns.  Therefore, this 
linear system is overdetermined [22]. 

For an overdetermined system, the differences 
between the right and left sides of all the equations of 
the system are minimized.  The control points 
calculated are approximations. 
For a system where the number of given points with 
gradients is more than 5, the linear system is 
overdetermined.  For these systems, in accordance 
with the increments of the differences between the 
number of equations and the number of unknowns, the 
status of the approximation worsens. 
 
4   Curve Shape Modification based on 
the Specified Radius of Curvature 
In this section, a method to modify a NURBS curve 
shape according to the specified radius of curvature 
distribution to realize an aesthetically pleasing 
freeform curve is described.   
The concept of radius of curvature specification and 
NURBS curve shape modification based on the 
specified radius of curvature distribution is shown in 
Fig.3.  A NURBS curve and its radius of curvature 
plots are shown in Fig.3(a). 
A method to modify the shape of the NURBS curve 
shown in Fig.3(a) to the curve shown in Fig.3(b) is 
examined. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Considering the parameter of the NURBS curve is 
different from the perimeter of the curve, the perimeter 
of a NURBS curve as a straight line is set to the 

Fig.3 Concept of radius of curvature specification                  
and NURBS curve shape modification                    

based on the specified radius of curvature distribution 
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Fig.2 Concept of generation of a NURBS curve using the 
given points with gradients 
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horizontal axis, and the radius of curvature is set to the 
vertical axis as shown in Fig.3(c).  Then, the radius of 
curvature distribution to the perimeter is drawn.  After 
this, specified radius of curvature is superimposed on 
the current radius of curvature distribution.  Linear, 
quadratic, cubic, quartic, quintic, and six degree 
algebraic functions are applied as specified radius of 
curvature to the current radius of curvature 
distribution to modify the shape of the NURBS curve. 
To be more in detail, coefficients of the algebraic 
function are calculated by introducing the 
least-squares method using the current radius of 
curvature distribution.  Then, the radius of curvature is 
specified by the determined algebraic function. 
As an example, the linear algebraic function as a 
specified radius of curvature specification is shown in 
Fig.3(c).  The i th of radius of curvature distribution 
of a perimetrically represented NURBS curve is 
denoted as ir , the specified radius of curvature at the 
same spot is denoted as ˆ ir , the difference id  is shown 
by Eq.(10) and is illustrated in Fig.3(c). 

1 2 1 2 ˆ( , , , , , )x x y y
i i n n iq q q qd r r- -= ××× ××× -  

Where 0,1,2, , 1i m= ××× - , m  is the number of specified 
radius of curvature, and n  is the number of NURBS 
curve segments plus 5, which is the degree of the 
curve. 

1 2 1 2( , , , , , )x x y y
n nS q q q q- -× × × × × ×  which is the sum of the 

squared differences for all specified radius of 
curvatures in Eq.(11) is minimized by introducing the 
least-squares method.  The radius of curvature 
expression is non-linear.  Therefore, by Taylor's 
theorem, Eq.(11) is linearlized as in Eq.(12). 
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Eq.(12) is minimized by equating to zero all the partial 
derivatives of   1 1( ,x xS q q+ D ,× × ×

2
x
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+
2 1,x y

nq q-D 1 ,yq+D ,× × ×  

2
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nq -D  with respect to x
rqD  and y

rqD ( 1,r = 2, ,× ××  
2)n -  as in Eq.(13). 
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Using these simultaneous linear equations, x
rqD  and 

y
rqD  ( 1,2, , 2)r n= ××× -  are calculated.  Then, x

rq  and y
rq   

are determined. 
 
5   Correlation Matching for Similarity 
Evaluation 
In this section, correlation matching for similarity 
evaluation is described.  Two NURBS curves are 
shown in Fig.4(a) and 4(b).  These curves can hardly 
be distinguished by just looking at their graphs.  But if 
the radius of curvature plots are drawn for both, the 
difference between the two curves is recognized 
immediately as shown in Fig.5(a) and 5(b). 
Radius of curvature is plotted using straight lines 
drawn outward from and perpendicular to the curve, 
with the line length proportional to the amount of 
radius of curvature at that spot.  Curve shape is judged 
by looking at the lines coming out from the curve and 
seeing how their lengths change along the path, not 
along the parameter.  Therefore, radius of curvature to 
the perimeter is drawn to evaluate the similarity of the 
curve shape as shown in Fig.6(a) and 6(b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 

Radius of curvature distribution is used as an 
alternative characteristic of the shape of the curve to 
evaluate the quality of a designed curve.  To adjust the 
various lengths of the curve perimeters, the total 
length of the perimeters and radius of curvature are 

(10) 

(b) curve B (a) curve A 
· Point marks indicate knot position. 

 Fig.4 Two NURBS curves 
 

· Point marks indicate knot position. 
 Fig.5 Two NURBS curves with radius of curvature plots 

 
 

(a) curve A (b) curve B 

Fig.6 Radius of curvature distribution of two NURBS curves 
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rescaled as 1.  A perimeter must be calculated 
according to the knot sequence of the knot vector. 
Discrete values ( 1,2,3, , )nc n m= ××× shown in Fig.6(a) 
which are radius of curvature to the perimeter are 
considered as the components of m  dimensional 
vector for curve A, denoting a .  In the same manner, 
discrete values ˆnc shown in Fig.6(b) are considered as 
the components of m  dimensional vector for curve B, 
denoting b . 
Similarity between curve A and curve B is evaluated 
by Eq.(14). 
S ×
=

a b
a b

 

Because curve perimeter and radius of curvature are 
rescaled as 1, and perimeter is calculated according to 
the knot sequence of the knot vector, the similarity is 
evaluated independent of location, orientation such as 
rotation and reflection, and the size of the curves.  The 
evaluated similarity between curve A and curve B 
shown in Fig.6 is 0.996. 

 
6 Fair Curve Expression and 
Evaluation of Fairness 
A curve with a monotone radius of curvature 
distribution is considered as a fair curve in the area of 
Computer Aided Aesthetic Design.  But no official 
standards are given.  Therefore, criterion for a fair 
curve is proposed tentatively. 
The shape of a NURBS curve is defined by the number, 
the location of its control points, and the knot 
sequence of the knot vector.  The designed curve is 
considered fair if the variation of radius of curvature is 
monotone for the same number of control points and 
knot sequence of the knot vector. 
In this section, fair curve expression and evaluation of 
fairness are described.  As a measure of curve fairness 
evaluation, radius of curvature distribution is used as 
an alternative characteristic of a curve.  First, radius of 
curvature distribution of the designed curve is 
evaluated to examine the fairness of the curve.  
Algebraic functions such as linear, quadratic, cubic, 
quartic, quintic, and six degrees are applied to the 
radius of curvature distribution of the designed curve 
as the specified radius of curvature.  Then applying the 
curve shape modification algorithm based on the 
specified radius of curvature distribution, the radius of 
curvature distribution is modified according to these 
six algebraic functions respectively. 
These radius of curvature distributions given by these 
six algebraic functions are considered monotone, 

because the independent variable of these algebraic 
functions is monotone to the corresponding dependent 
variable of these functions.  Therefore, curves 
designed in this manner are considered fair.  These 
judgements are performed by evaluating the similarity 
technique described in the previous section.  This 
similarity is evaluated by using the radius of curvature 
distribution according to six algebraic functions used 
as references and the radius of curvature distribution 
of the designed curve as a match. 
It is considered that the highest similarity reveals that 
this curve is designed to have this radius of curvature 
distribution, and the similarity measured is considered 
as the fairness of the designed curve. 
As an example of a fair curve generation and fairness 
evaluation, a NURBS curve and its radius of curvature 
distribution to the perimeter are shown in Fig.7. 
 
 
 
 
 
 
 
 
 
 

 
Algebraic functions mentioned above are applied to 
the radius of curvature distribution shown in Fig.7 by 
using the least-squares method.  These six functions 
are determined as the specified radius of curvature.  
These are shown in Fig.8 together with the radius of 
curvature distribution shown in Fig.7.  Applying the 
curve shape modification algorithm based on these six 
algebraic functions to the designed curve, the shape of 
the curve is modified.  Afterwards, setting these six 
radius of curvature distributions as references and the 
radius of curvature distribution of the designed curve 
as a match, six similarities are evaluated.  The 
similarities evaluated are summarized in Table 1.  In 
Table 1, similarity expresses the fairness of the curve.  
From Table 1, the designed curve whose radius of 
curvature is shown in Fig.7, is judged to be designed 
so that the radius of curvature distribution will be six 
degree.  And this measured similarity 0.99993 
expresses the fairness of the designed curve. 
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Fig.7 Designed curve and its 
radius of curvature distribution 
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algebraic 
function linear quadratic cubic quartic quintic six 

radius of 
curvature 
shown in 

Fig.7 

0.99772 0.99888 0.99905 0.99974 0.99981 0.99993 

 
7   Concluding Remarks 
A quintic NURBS curve, the first derivative of a 
quintic NURBS curve, curvature vector, curvature, 
and radius of curvature are expressed.   
The relation of curvature and radius of curvature are 
inverted.  Therefore, even if the radius of curvature to 
the perimeter is linear, the curvature distribution to the 
perimeter is non-linear.  The radius of curvature is 
useful to understand the quality of the designed curve 
visually. 
The concept of radius of curvature specification to 
modify the shape of a NURBS curve is illustrated.  
The difference between the NURBS curve radius of 
curvature and the specified radius of curvature is 
minimized by introducing the least-squares method to 
modify the shape of the NURBS curve. 
Algebraic functions such as linear, quadratic, cubic, 
quartic, quintic, and six degrees are applied to the 
radius of curvature distribution of the designed curve 
as the specified radius of curvature.  The radius of 
curvature distributions given by these six algebraic 
functions are considered monotone, because the 
independent variable of these algebraic functions is 
monotone to the corresponding dependent variable of 
these functions.   
Similarity is evaluated using the radius of curvature 
distribution according to six algebraic functions as 
references and the radius of curvature distribution of 
the designed curves as matches by using correlation 
matching.  The values of radius of curvature to the 
perimeter are considered as the components of a multi 
dimensional vector for the curve.  Similarity between 
two curves is expressed by normalizing the dot 
product of two vectors.  Curve shape similarity 
evaluation is tried using an example.   
Considering that a curve with a monotone variation of 
radius of curvature distribution is fair, the similarity of 
the designed curve to a fair curve is evaluated.  This 
measured similarity expresses the fairness of the 
designed curve.  Using this technique, the fairness of a 
curve is evaluated by using the similarity of the radius 
of curvature distribution. 
In the future, we are planning to establish a definition 
of a fair curve using a lot of curve data that will be 
gathered. 
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