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Abstract: - The paper deals with structural properties of a class of strictly causal systems. It is shown that a special 
physically correct internal structure of a given system representation caled dissipation normal form can be derived as a 
natural consequence of strict causality, dissipativity, minimality and asymptotic stability requirements. A 
generalization of classic Tellegen’s theorem together with bi-orthonormal basis of the state velocity space expressing 
the signal energy conservation law for abstract system state space representations have been used. It is demonstrated by 
examples that the resulting structure represents a unifying tool for analysis and synthesis of a relatively general class of 
linear as well as nonlinear causal systems. 
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1   Introduction 
Almost in any field of science and technology some sort 
of stability problem can appear. Instability and chaos are 
certainly the most important phenomena which should 
be treated before any other aspect of reality will be 
attacked. Hence it is not very surprising that a broad 
variety of approaches to the problem of stability, 
instability and analysis of chaotic phenomena exists. 
Many of the most popular techniques in the field of 
stability and chaos are in a certain sense related to the 
work of A.M.Lyapunov and can be seen as energy 
oriented. 
Tellegen’s theorem is one of the well known forms of 
energy conservation statement in the field of electrical 
engineering [1]. The most important feature of 
Tellegen’s approach is the fact that the energy 
conservation principle holds without any regard to 
physical nature of constituent network elements. This is 
the key idea of the proposed approach to problems of 
dissipativity and chaos [2, 3].    
 
 
2   Physical correctness and classical 
    Tellegen’s theorem 
Certainly, any realizable system has to fulfil some 
causality and energy conservation requirements. Recall 
that existence of an abstract state space representation is 
necessary for a system to be causal. On the other hand 
causality does not imply energy conservation. In 
electrical engineering Kirchhoff’s laws are known to be 

necessary and sufficient for physical correctness of any 
electrical network. 
Definition 1: (Physical correctness of electrical circuit)  
Electrical circuit is physically correct if it is not in 
contradiction with both the voltage and the current 
Kirchhof’s laws. 
Tellegen’s theorem, which is known to be one of the 
most powerful tools of electrical network theory, has 
proven to be very elegant abstract form of energy 
conservation principle for a class physically correct 
system representations, in which voltages and currents 
have been chosen as state variables [4 - 10]. 
Let us briefly summarize the essential features of the 
classical version of Tellegen’s theorem. Assume that an 
arbitrary connected electrical network of  b components 
is given. Let us disregard the specific nature of the 
network components and represent the network structure 
by an oriented graph  with  n  vertices and b branches. 
Let the set of Kirchhoff  laws constraints is given 
           A i(t) = 0         B v(t)   = 0                    (1)             
where A is a node incidence matrix, B is loop incidence 
matrix, and i and v are:  

      1 2 1 2[ , , , ] , [ , , ]T T
n ni i i v v v= =i  v… …     (2) 

Let J be the set of all current vectors i and V  be the set 
of all voltage vectors  v  such that  i  and  v  satisfy (1). 
Then the classical Tellegen’s principle follows:  
Theorem 1. (Classical Tellegen’s theorem) 
If i ∈ J  and v ∈ V  then it holds: 
           ( ), ( ) 0t t =i v                             (3) 
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3  Abstract form of energy conservation  
    principle 
The arbitrariness in the choice of state coordinates 
motivates introducing a group of state transformations 
on which a generalization of the classical Tellegen’s 
principle can be based. Let S is a nonlinear system and 

{ }Sℜ is a discrete-time finite dimensional strictly causal 
state space representation of S: 

       [ ]( 1) ( ) ( ) ,
( ) ( ) , ( ) ( )

k k k
k k k k

+ = +

= =

x f x w
w B u y C x

               (4) 

If an input u(k) and a state value x(k) will be chosen then 
the next state value x(k+1) will be known, and the state 
difference vector ∆x(k) can be defined as 
  { }( ) ( 1) ( ) , 0, 1, 2,..kk k k k∆ = + − ≡ ∆ ∈x x x x         (5) 
together with a row vector η(k), (“discrete-time gradient 
vector”), defined by: 
           { }1η(k) [ ( 1) ( )] η , 0,1,2,

2
T

kx k x k k= + + ≡ ∈ …        (6) 

The vector ηk is a generalization of standard gradient 
vector. The discrete-time generalization of Tellegen’s 
principle is then given by the inner product: 
          { }, 0,1, 2, : , 0Tt k k∀ ≡ ∈ ∆ =k kx η…          (7) 

and in the continuous-time case it holds 
          : ( ),  ( ) 0Tt t t∀ =x x�          (8) 

A geometric interpretation of the generalized Tellegen’s 
principle is visualized at the Fig. 2 with continuous-time 
version as a limit of the discrete-time case (Fig. 1).  

 
Fig. 1. Geometric interpretation of the generalized 

discrete Tellegen’s principle (for n=2). 
 

 
Fig. 2. Geometric interpretation of the generalized 

continuous Tellegen’s principle (for n=2). 

4  Dissipativity and conservativity 
Recall that according to Liouville’s theorem of vector 
analysis, dissipative systems have the important property 
that any volume of the state space strictly decreases 
under the action of the system flow [11 - 12]. For 
continuous systems with the state velocity given by the 
nonlinear vector field f , the property of dissipativity is 
defined by using the operation of divergence : 

                    
1

0
( )div ( )

n
i

i i

f
x=

<
∂

=
∂∑ xf x         (9) 

Thus a linear system is dissipative if and only if its 
matrix A has negative trace  
           Trace A < 0                             (10)  
Nonlinear systems having a dissipative approximate 
linearization are locally dissipative, but need not to be 
globally dissipative. Vector fields for which  
  div ( ) 0, ( ) (.) (.) 0Trace= = ⇔ =f x f x A x A       (11) 
preserve volume along state trajectories, and are referred 
to as conservative.  
 
 
5  Causality and energy conservation:  
    Some structural aspects 
As an alternative to the well-known physical energy 
motivated method of Lyapunov functions a new 
conceptually different approach to stability problems has 
recently been proposed in [2 - 4] and called the Signal 
Energy-Metric approach. The crucial idea is that, in fact, 
it is not the (physical or abstract) energy by itself, but 
only a measure of distance from the system equilibrium 
to the actual state x(t), what is needed for stability/in-
stability analysis. Thus a state space metric ρ[x(t), x*], 
where x*denotes the equilibrium state, can be defined, 
and the basic idea of a new state energy-metric approach 
is formally expressed by: 

                           2 *1
( ) ( ),

2
E tρ=   x x x        (12) 

To avoid confusion the concepts of the signal power and 
that of signal energy for the continuous- time system 
representations { }Sℜ are defined first: 
  0

0{ }: ( ) [ ( )] ( ), ( ) ,
( ) ( )

S t t t t
t t

ℜ = + =
=

x f x Bu x x
y Cx

      (13) 

Let the immediate value of the output signal power and 
corresponding value of the system energy, accumulated 
in the state x(t) be defined by: 
     2 2 d ( )( ) ( ) , ( ) ( ) , ( ), 0d 

EP t t E t t P ttδ δ= = = − >xy x     (14) 

Putting u(t)=0, ∀t≥t0 and computing the derivative of the 
energy function E(t) along the equivalent representation 
of the given system we get the signal power balance 
relation  (for  f(x)=A(x) x ) in the form 
          2d ( ) ( )[ (.) + (.)] ( ) ( )d

T TE t t tt δ= = −x x A A x y       (15) 
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and, by integration, the energy conservation principle for 
a proper chosen equivalent state space representation 
follows. Hence, in case of zero input u(t) = 0, t ≥ t0 , the 
total energy accumulated in the system in time t0 must be 
equal to an amount of the energy dissipated on the 
interval [t0 , ∞) by the output:  

                   
0

2
0( ) ( )

t
E t t dt

∞
= ∫ y        (16) 

It follows that a special form of a structurally dissipative 
state equivalent system representation called  dissipation 
normal form exists and is given by matrices: 

1 2 1

2 3 2

33 4

11

0 0 0 0
00 0 0 0
0

0 0 0 0 ,

0 0 0 0 0 0
0 0 0 0 0 0 0

,T

n nn

nn

α α β
α α β

βα α

βα α
βα

γ                                                          

−−

−
−

−= = =

−
−

A C B

"
"
"

## # # # % # #

"

#

 (17) 

 
 
6  Generalized Hessenberg structure 
Let us consider the class of systems given by the state 
space representation  
      ( ) [ ; ( ), ( )]{ }: t t t tS =ℜ x f x u�                 (18)  
            ( ) [ ; ( )]t t t=y h x                                (19)   
with t as continuous time variable, x1, x2,…,xn as state 
coordinates, 1 2, ,..., nx x x� � � as the state velocity coordinates,  
u1 , u2,… , ur   as the  system input signals, and with y1 , 
y2,… , yp  as the observed system output signals. 
Let us now define a constituent set of non-interacting 
elementary subsystems 

          

1 1 1 1 1 1 1

2 2 2 2 1 2 2

1

( , , ),    ( , )
( , , ),   ( , )

...            ...                   ...
( , , ),   ( , )n n n n n n

x f t x u y h t x
x f t x u y h t x

x f t x u y h t x

= =
= =

= =

�
�

�

                  (20) 

It follows that the constituent set (20) is dissipative if at 
least one of the elementary subsystems is dissipative.  
Let us now investigate a minimality property of  the state 
velocity space. 
Definition 2: (Hessenberg structure of a matrix)  
We say that a n-th order square matrix A has the 
Hessenberg structure if :   
  ,1         0,     1o

i ja j i= > +         (21) 

  , 1 , 12       0,   and    ( ) 1o
i i i ia sign a+ +≠ =        (22) 

Definition 3: (Hessenberg structure of a vector field) 
A vector field f  has the Hessenberg structure if it holds  

  1     0,    1o i

j

f j i
x
∂

= > +
∂

        (23) 

  
1 1

2     0,    1o i i

i i

f fsign
x x+ +

 ∂ ∂
≠ = ∂ ∂ 

      (24) 

Definition 4: (Generalized Hessenberg structure  of a 
system representation) 
We say that a representation has the Generalized 
Hessenberg structure if the 
vector field f  has the Hessenberg structure and in 
addition  if it holds 

        1 1
1

1 1

3     0,    1o h hc sign
x x

 ∂ ∂
= ≠ = ∂ ∂ 

      (25) 

        4     0,    1o n n
n

n n

f fb sign
u u

 ∂ ∂
= ≠ = ∂ ∂ 

      (26) 

Remark 1:  It is worthwhile to notice that each of the 
Jacobian matrices Jx(f), Ju(f), Jx(h) of the velocity 
vector field f as well as that one of the observation map 
h have a  properly defined structure motivated by the 
system structure corresponding to the cascade 
connection of the elementary subsystems according to 
the Fig. 3.  For the internal structure of subsystems 

kS see Fig. 4. 

 
Fig. 3. Generalized Hessenberg structure. 

 
Fig. 4. Internal structure of the elementary subsystem kS  

 
The system representation in Generalized Hessenberg 
structure is obviously always controllable and 
observable, i.e. structurally minimal and is defined by 

                          

1 1 1 2

2 2 2 3

3 3 3 4

1 1 1

1

( , , )
( , , )
( , , )

...      .....
( , , )

( , )
( ) [ , ( )] ( )

n n n n

n n n

x f t x x
x f t x x
x f t x x

x f t x x
x f t x u

t t t x t

− − −

=
=
=

=
= +
= =

�
�
�

�
�
y h x

           (27) 

where the set of external interactions is given by 
                     u(t)   =   un(t),      y(t)   =   x1(t)      (28) 
and the set of internal interactions is expressed by 
        ui  = xi+1 , i=1,2,..., n-1    yi = xi ,  i  =  1, 2,...,     (29) 

∫
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7  Bi-orthonormal basis of the state  
    velocity space 
In order to specify the physically correct internal system 
structure in the sense of energy conservation principle, 
we introduce a  structural representation 

          
*{ }:   ( )
             ( ) ( )    
S (t)= (t) + t

t t
ℜ

=

* *

*

Q x A x B u
y C x

      (30) 

where the columns q1, q2 , … , qn of the matrix Q form a 
biorthonormal basis in the state velocity space given by 
the backwards recursion: 
          qk + qk+1  = ek ,  k = 1,2, … , n-1, qn = en         (31) 

1

*

1 0 0 0 1 0 0 ... 0 0
1 1 0 0 1 1 0 ... 0 0

1 1 . . 0 1 1 ... 0 0
,1 1 ... . . 0 0 1 ... 0 0

. 1 . 0 0 . . . . . .

. . . 1 0 0 0 . ... 1 0

. . . 1 1 0 0 . ... 1 1

0
0
.

                    ,    .
.
0
1

−

   
   −   
   −
   = =−   
   −
   
   
   −   

 
 
 
 
 =  
 
 
 
  

Q Q

B

1
0
.

( ) .
.
0
0

T

 
 
 
 
 =  
 
 
 
  

*C

 (32) 

 
 
8  Dissipativity and minimality 
If each elementary subsystem kS of the constituent set is 
dissipative, then it holds 

                   :   0,    1, 2,.....i

i

fi i n
x
∂

∀ < =
∂

      (33) 

Hence the simpliest dissipative Hessenberg form of the 
structural matrix A* and the resulting generic minimal 
and dissipative structure of the matrix A(.) follow: 

 

*

1 1 0 ... 0 0

0 1 1 ... 0 0 0

0 0 1 ... 0 0 0
                

: : : ::: : : :

0 0 0 ... 0 1 1

0 0 0 ... 0 0 1

1 1 0 0 ... 0 0

1 0 1 0 ... 0 0

0 1 0 1 ... 0 0

0 0 1 0 ... 0 0

: : : : ::: : :

0 0 0 0 ... 0 1

0 0 0 0 ... 1 0

−

−

−
=

−

−

−

−

−

= = −

−

 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
  

-1 *

A

A Q A

       (34)    

and thus the internal structure of the dissipation normal 
form has been justified. 
 
 
9   Non-linear phenomena: chaoticity and  
     resonance 
Let a simple 4th order nonlinear system in the 
dissipation normal form is given        

                       

1 1 1 2 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

( , )x x x x x

x x x

x x x

x x

α α

α α

α α

α

= − +

= − +

= − +

= −

�

�

�

�

      

where coefficients and initial conditions are given by: 

             

2 2

1 1 2 0 1 1 2 2

0 1 2

2 3

4

( , ) ( )

1, var, 10

1, 1

frequency parameter

x x x xα β β β

β β β

α α

α

=− − −

= = =

= =

=

       

1

2

3

4

(0) 0

(0) 0

(0) 0.5

(0) 0

x

x

x

x

=

=

=

=

 

 
Fig. 5. Chaoticity and resonance 

 
Fig. 6. Zoom – Region of chaoticity 

 
At the Fig. 7.-10. some typical cases of  the system 
behavior are displayed by  means of the 3-D projections 
of  the state space trajectories in dependence on the 
values of the frequency parameter α4, chosen from the 
energy diagram Fig. 5., 6. for: α4 =1 region of sub-
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resonance behavior, α4 =1.7 sub-chaotic behavior, α4 =2   
region of the chaotic behavior, α4 =2.2 quasi-periodic 
behavior. Notice also the dependence of the energy plot 
in the Fig.5. on the value of β1,[13 - 22]. 

 
Fig. 7. 3-D Projection of  the state α4 =1. 

 
Fig. 8. 3-D Projection of the state α4 =1.7. 

 
Fig. 9. 3-D Projection of the state α4 =2.0. 

 
Fig. 10. 3-D Projection of the state α4 =2.2. 

 
 
10   Conclusion 
In the contribution a new unifying, systematic and 
constructive approach to non-linear phenomena, based 
on concepts of the system energy-metric of the state 
space, and on the dissipation normal form has been 
presented. The main features of the proposed method are 
illustrated by several typical examples. 
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