
C Software for Some New Autonomous Methods

ADRIAN IONESCU
Wagner College

Department of Mathematics and Computer Science
Staten Island, NY 10301

USA
ionescu@wagner.edu

OLIN JOHNSON
University of Houston

Department of Computer Science
Houston, TX 77204

USA
johnson@cs.uh.edu

Abstract: This work is an extension of our previous paper [3], in which we have started introducing new C software
for autonomous ordinary differential equation initial-value problems

y′ = f(y), y ∈ Rn,

y(x0) = y0, x0 ∈ R, y0 ∈ Rn,

which implements new Runge-Kutta methods [1], [2]. The novel feature of this approach is the replacement of
evaluations of f by approximations or evaluations of fy. The advantage of this new method lies in the fact that
fewer evaluations of f are required than in the standard Runge-Kutta methods and, usually, fy can be approximated
to the desired accuracy with very little arithmetic. In effect, the new methods can be thought as multi-step Runge-
Kutta methods. In this paper, we introduce some new Goeken-Johnson interpolation methods. We have also
extended the capabilities of the software and we compare the classical Runge-Kutta methods of orders 3, 4 and
5, and the corresponding new Goeken-Johnson methods using both fy and approximations of fy. We present
numerical results of these comparisons. These results (for performance and accuracy) indicate that the new methods
can be at least comparable if not better than the classical methods.

Key–Words: Multi-step, Autonomous numerical methods, C software, Interpolation, Numerical comparisons

1 Introduction
The nonstiff first-order ordinary differential equation
initial-value problem

y′ = f(x, y), x ∈ R, y ∈ Rn, (1)
y(x0) = y0, x0 ∈ R, y0 ∈ Rn,

is often solved numerically using an explicit Runge-
Kutta method of a specific order and with a number of
evaluations (stages). For simplicity we consider the
autonomous form of Problem (1): y and f have n + 1
components with yn+1 = x and fn+1(y) = 1. Then
we obtain the following first-order ODE initial value
problem:

y′ = f(y), x ∈ R, y ∈ Rn+1,

y(x0) = y0, x0 ∈ R, y0 ∈ Rn+1, (2)
(y0)n+1 = x0,

One defines the following recursive algorithm with s
stages, cf., Section 2 [1]:

ki = hf(yj +
i−1∑
p=1

aipkp + haiify(yj)k1),

i = 1, 2, . . . , s (3)

yj+1 = yj +
s∑

p=1

bpkp.

2 Goeken-Johnson Autonomous
Methods

For the first-order ODE initial-value problem (2) we
assume that f(y) has derivatives to the fourth order in
a domain in Rn+1 where y ∈ Rn+1. We also assume
that

‖ f(y1)− f(y2) ‖2≤ L ‖ y1 − y2 ‖2

for all y1 and y2 in the domain. Therefore, Prob-
lem (2) has a unique local solution.

2.1 Goeken-Johnson third-order method
The third-order Goeken-Johnson method (GJ32) has
2 stages, cf., Equation (3), given by

k1 = hf(yj),
k2 = hf(yj + a21k1 + ha22fy(yj)k1), (4)

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      180



b1 b2 a21 a22

1/4 3/4 2/3 2/9

Table 1: Example of Goeken-Johnson 3rd order coef-
ficients.

b1 1/6 1/6 1/6 1/10 1/10
b2 1/6 2/3 2/3 1/2 1/2
b3 2/3 1/6 1/6 2/5 2/5
a21 1 1/2 1/2 1/3 1/3
a22 1/2 1/8 -1/8 1/18 -1/6
a31 3/8 -1 3 -25/24 35/24
a32 1/8 2 -2 15/8 -5/8
a33 0 -1/2 5/2 -5/18 5/6

Table 2: Example of Goeken-Johnson 4th order coef-
ficients.

yj+1 = yj + b1k1 + b2k2;

example coefficients are given in Table 1.

2.2 Goeken-Johnson fourth-order method
The fourth-order Goeken-Johnson method (GJ43) has
3 stages, cf., Equation (3), given by

k1 = hf(yj),
k2 = hf(yj + a21k1 + ha22fy(yj)k1),
k3 = hf(yj + a31k1 + a32k2 (5)

+ha33fy(yj)k1),
yj+1 = yj + b1k1 + b2k2 + b3k3;

example coefficients are given in Table 2.

2.3 Goeken-Johnson fifth-order method
The fifth-order Goeken-Johnson method (GJ54) has 4
stages, cf., Equation (3), given by

k1 = hf(yj),
k2 = hf(yj + a21k1 + ha22fy(yj)k1),
k3 = hf(yj + a31k1 + a32k2

+ha33fy(yj)k1),
k4 = hf(yj + a41k1 + a42k2 (6)

+a43k3 + ha44fy(yj)k1),
yj+1 = yj + b1k1 + b2k2 + b3k3 + b4k4;

example coefficients are given in Table 3.

2.4 Goeken-Johnson Interpolation Methods
The Goeken-Johnson interpolation methods use ba-
sically the same algorithms as the ones presented in

b1 5/48 1/24 5/54 1/14
b2 27/56 125/336 250/567 32/81
b3 125/336 27/56 32/81 250/567
b4 1/24 5/48 1/14 5/54
a21 1/3 1/5 3/10 1/4
a22 1/18 1/50 9/200 1/32
a31 -152/125 -52/27 -9/8 -329/250
a32 252/125 70/27 15/8 252/125
a33 -44/125 -8/27 -9/32 -259/1000
a41 19/2 43/5 17/3 209/35
a42 -72/7 -64/7 -490/81 -32/5
a43 25/14 54/35 112/81 10/7
a44 5/2 13/10 23/18 11/10

Table 3: Example of 5th order Goeken-Johnson coef-
ficients.

Sections 2.1, 2.2, 2.3. The only difference is that
the derivatives fy are replaced by approximations
of fy. The method starts by using a Runge-Kutta
method in order to initialize the process and determine
y0, y1, y2, y3. The cubic interpolation for y0, y1, y2, y3

allows us to determine an approximation of fy(y4).
For all the intervals from j = 4 to j = m the cor-
responding Goeken-Johnsom method is used to ad-
vance from yj to yj+1. In order to obtain (approx-
imation of) fy(yj), cubic interpolation is used for
yj−3, yj−2, yj−1, yj . Note that the interpolation algo-
rithm is due to G.B. Rybicki, cf., [4].

3 Design of Goeken-Johnson Suite
For our intermediate value problems (IVP) we solve
the autonomous case

y′ = f(y), y ∈ Rn+1,

y(x0) = y0, x0 ∈ R, y0 ∈ Rn+1,

where (y0)n+1 = x0.

The user can easily extend the software to cover
other variants of the Goeken-Johnson methods. Our
software allows the user to easily change the coef-
ficients used in the computation, [3]. For other C-
implementations as well as other numerical methods
also see [4].

We provide a driver to call the appropriate method
of the user’s choice. The user has the flexibility of
calling the routines as needed by simply changing the
driver. The user provides the initial value (x0 = a)
and the final value (xm = b), as well as the num-
ber of steps (m) which automatically determine h
(h = b−a

m ). Obviously, the user must also provide the
function f and the functions fy or the approximations

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      181



of fy. Because of the complexity of polynomial inter-
polation for multi-variables, the software covers only
the one-dimensional case when interpolation is used.
In the multi-dimensional case, if f consists of elemen-
tary functions, one can determine fy [3]. Moreover,
the answers are also converted to C code which is then
used in the derivative routines. Some examples are
presented in Section 4.

4 Numerical Results
In this Section, some numerical comparisons of the
classical Runge-Kutta (RK) methods of orders 3, 4
and 5, and of the corresponding new Goeken-Johnson
(GJ) methods using both f ′ and approximations of f ′

are presented.

Example 1 Solve the following system of ODE:

dy1

dx
= y1 y2, y1(0) = 1,

dy2

dx
= y1 + y2. y2(0) = −1,

If we consider the initial value (a = 0), the final
value (b = 1), and the number of steps (m = 10), we
obtain the following y values:

• RK Method, Order 3 (RK33):
y1[1.000] = 0.3057318786,
y2[1.000] = −1.5383294619.

• RK Method, Order 4 (RK44):
y1[1.000] = 0.3071159057,
y2[1.000] = −1.5675091726.

• RK Method: Order 5 (RK56):
y1[1.000] = 0.3071138201,
y2[1.000] = −1.5675108063.

• GJ Method, Order 3 (GJ32):
y1[1.000] = 0.3071159719,
y2[1.000] = −1.5674266680.

• GJ Method, Order 4 (GJ43):
y1[1.000] = 0.3071134365,
y2[1.000] = −1.5675079666.

• GJ Method, Order 5 (GJ54):
y1[1.000] = 0.3071138591,
y2[1.000] = −1.5675108474.

In Table 4, we present time comparisons when run-
ning the software for both the Goeken-Johnson and
the classical Runge-Kutta methods on a Dell Pow-
erEdge SC430 with a Pentium D 2.8 GHz proces-
sor. For example, the results obtained by using the

Steps (m) Goeken-Johnson Runge-Kutta
3rd Order 3rd Order

10,000 31 ms 31 ms
100,000 341 ms 341 ms

1,000,000 3,453 ms 3,454 ms
10,000,000 34.656 ms 34,562 ms

4th Order 4th Order
10,000 46 ms 47 ms

100,000 469 ms 453 ms
1,000,000 4,688 ms 4,547 ms

10,000,000 47,078 ms 45,578 ms
5th Order 5th Order

10,000 47 ms 62 ms
100,000 515 ms 625 ms

1,000,000 5,172 ms 6,172 ms
10,000,000 51,813 ms 61,687 ms

Table 4: Time comparisons for Goeken-Johnson and
classical Runge-Kutta methods (Example 1.)

- xO

6

y

&%
'$Earth q−µ ��

��Moonq
µ∗
tShip

1.2

Figure 1: Configuration Earth, Moon, Spaceship
(µ∗ = 1− µ).

Goeken-Johnson fifth-order method are about 20%
faster than the corresponding classical Runge-Kutta
method. Note that the fifth-order Goeken-Johnson
method requires only four evaluations of f compared
to six evaluations of the classical fifth-order Runge-
Kutta method.

The following four-dimensional autonomous sys-
tem describes the configuration shown in Figure 1 [3].
The spaceship is returning to the initial position in
6.19216933 days. The distances are relative to the
distance between the centers of the Earth and Moon
which is considered to be equal to a unit.

Example 2 Solve the following system of ODE (µ =
1

82.45 and µ∗ = 1− µ):

dy1

dt
= y2, y1(0) = 1.2,

dy2

dt
= 2 y4 + y1 −

µ∗(y1 + µ)

([(y1 + µ)2 + y2
3]

3
2

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      182



− µ(y1 − µ∗)

([(y1 − µ∗)2 + y2
3]

3
2

, y2(0) = 0,

dy3

dt
= y4, y3(0) = 0,

dy4

dt
= −2 y2 + y3 −

µ∗ y3

([(y1 + µ)2 + y2
3]

3
2

− µ y3

([(y1 − µ∗)2 + y2
3]

3
2

,

y4(0) = −1.04935751,

where t ∈ [0, 6.19216933]

One can complete the calculation of the required
derivatives. For more complicated derivatives com-
puter algebra systems have been integrated with the
C software [3]. We then use the driver provided by
the Goeken-Johnson Suite. For example, if we con-
sider the initial value (a = 0), the final value (b =
6.19216933), and the number of steps (m = 10, 000),
we obtain the following y values:

• RK Method, Order 3 (RK33):
y1[6.192] = 6.7797688840,
y2[6.192] = −0.7783518240,
y3[6.192] = −2.0295329919,
y4[6.192] = −7.1111445181.

• RK Method, Order 4 (RK44):
y1[6.192] = 1.2004042400,
y2[6.192] = 0.0004845485,
y3[6.192] = 0.0036875589,
y4[6.192] = −1.0494447749.

• RK Method: Order 5 (RK56):
y1[6.192] = 1.2004397146,
y2[6.192] = 0.0005478063,
y3[6.192] = 0.0036335424,
y4[6.192] = −1.0494826623.

• GJ Method, Order 3 (GJ32):
y1[6.192] = 1.1829030026,
y2[6.192] = −0.0351497113,
y3[6.192] = 0.0207671715,
y4[6.192] = −1.0321513538.

• GJ Method, Order 4 (GJ43):
y1[6.192] = 1.2005849363,
y2[6.192] = 0.0008386902,
y3[6.192] = 0.0034438378,
y4[6.192] = −1.0496364521.

• GJ Method, Order 5 (GJ54):
y1[6.192] = 1.2004677012,
y2[6.192] = 0.0006093921,
y3[6.192] = 0.0036027291,
y4[6.192] = −1.0495121148.

Steps (m) Goeken-Johnson Runge-Kutta
3rd Order 3rd Order

10,000 125 ms 78 ms
100,000 1,234 ms 875 ms

1,000,000 12,390 ms 8,719 ms
10,000,000 124,734 ms 88,250 ms

4th Order 4th Order
10,000 156 ms 125 ms

100,000 1,578 ms 1,218 ms
1,000,000 15,719 ms 12,094 ms

10,000,000 158,906 ms 121,782 ms
5th Order 5th Order

10,000 188 ms 172 ms
100,000 1,812 ms 1,703 ms

1,000,000 18,157 ms 17,109 ms
10,000,000 183,281 ms 171,625 ms

Table 5: Time comparisons for Goeken-Johnson and
classical Runge-Kutta methods (Example 2.)

Note that we obtain the same final values as the
initial ones. The fourth- and fifth-order methods give
accurate answers. In this example, the third-order
Goeken-Johnson autonomous method proved to be
more accurate than the corresponding third-order clas-
sical Runge-Kutta method. Increasing the number of
steps does not improve the accuracy of the answers
significantly. For example, using m = 10, 000, 000,
we obtain for the GJ Method, Order 5 (GJ54):
y1[6.192] = 1.2004445134,
y2[6.192] = 0.0005582723,
y3[6.192] = 0.0036281392,
y4[6.192] = −1.0494876922.

Note that we have complicated formulas for the
derivatives [3]. This is the reason that the times for the
fifth order Runge-Kutta method are somewhat better
than the corresponding Goeken-Johnson method, cf.,
Table 5.

5 Conclusions
We have developed software to solve IVP when y ∈
Rn+1, n ≥ 1, in the autonomous case. It is relatively
straightforward to address the cases when the depen-
dent variable y ∈ Rm×n or y ∈ Cn.

The new package includes the base routines for
the Runge-Kutta methods of order 3-5 and for the
Goeken-Johnson methods of order 3-5 (autonomous
case using fy or interpolations of fy). We have also
included the documentation, and some solved exam-
ples, cf., Section 4. Software is available for download

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      183



at http://www.wagner.edu/˜ionescu/papers/gj/gji.zip.
We compared the classical Runge-Kutta meth-

ods and the corresponding Goeken-Johnson methods
and presented numerical results of these comparisons.
These results indicate that the new methods can be at
least comparable if not better than the classical meth-
ods. In examples which involve simple derivatives,
the fifth-order Goeken-Johnson method is about 20%
better than the corresponding Runge-Kutta method.
In other examples, which involve complicated deriva-
tives, the Runge-Kutta methods may run faster than
Goeken-Johnson methods.

References:

[1] D. Goeken and O. Johnson, Fifth-Order Runge-
Kutta with Higher Order Derivative Approxima-
tions, Electronic Journal of Differential Equa-
tions Conference 02, 1999, pp. 1–9.

[2] D. Goeken and O. Johnson, Runge-Kutta with
Higher Order Derivative Approximations, Ap-
plied Numerical Mathematics 34, 2000, pp. 207-
218.

[3] A. Ionescu, O. Johnson and R. Abbasian, Maple
and C Software for Some Autonomous Numer-
ical Methods, Proceedings of MC 2005, Water-
loo, Canada, July 14–17, 2005.

[4] W.–H. Press, S.–A. Teukolsky, W.–T. Vetter-
ling and B.–P. Flannary Numerical Recipes in C,
Cambridge University Press, New York, 1997.

Proceedings of the 7th WSEAS International Conference on Systems Theory and Scientific Computation, Athens, Greece, August 24-26, 2007      184


