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Abstract: - The contribution is mainly concerned with presentation of a new fundamental approach to structural 
properties of linear and non-linear causal system representations. It has been proven that complete analysis of 
instability, conservativity, dissipativity, anti-dissipativity, stability, asymptotic stability and chaoticity reduces to two 
independent tests: the test  of  state energy monotonicity and that of complete state observability. 
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1   Introduction 
Almost in any field of science and technology some sort 
of stability problem can appear. Instability is certainly 
the most important phenomena, which should be 
investigated before any other aspect of reality will be 
attacked. Two typical situations should be distinguished 
in dynamical systems theory, if an in-stability problem 
has to be solved. The first one arises if an energy 
function E[x(t)] of a given system is known in a 
mathematical form. In such situations the time evolution 
of internal energy along any system motion can be 
described, and an energy monotonicity test, (see for 
instance [1], [2]), can be used: 

                         ( )[ ( )] 0,    0  dEE t
dt

> ≤
xx                    (1) 

     On the other hand, there are certainly even more real 
world situations in which causality and energy 
conservation are known to play a crucial role, but any 
mathematical expression for the system energy evolution 
is not available. 
     In many cases, a sort of approximation seems to be 
adequate way to avoid this difficulty. If effects of 
parameter changes are neglected and a technique of 
approximate linearization is used, then a form of 
algebraic stability test based on the explicit knowledge 
of the solution of differential equations may help to 
simplify the solution. A set of necessary and sufficient 
conditions for roots: 
                                   Re si   < 0                                     (2) 
or for coefficients ai of the system characteristic 
polynomials P(s), such as  the well known Hurwitz 
criterion, for instance, have been frequently used. For 
the so-called non-critical cases, A. M. Lyapunov has 
legitimated the approximate linearization approach by 
his first method, also called Indirect, in the year 1892. 

Unfortunately, it is more an exception as a rule that a 
real world system can be a’priory considered as non-
critical.  
     In fact, more appreciated became the second method 
of Lyapunov, which instead of the physical energy E 
works with a set of axiomatically defined scalar 
functions V of the state x(t), called Lyapunov functions. 
Fundamental  drawback if lack of a reliable technique of 
Lyapunov functions generation. 
     The main goal of the paper is to present an alternative 
method for stability analysis. Instead of Lyapunov 
functions a state space metric has been introduced as an 
abstract measure of the total energy accumulated in the 
system state [1, 2]. The essence of the new approach is 
demonstrated by variety of examples. 
 
 
2   Internal and external stability 
Recall that from general point of view any collection of 
trajectories constitutes a dynamical system, which, in 
principle, can be described either by its external 
behavior, or by an internal structure. Intuitively, the 
essence of an external stability property can formally be 
expressed as follows  
 {(linear) system is stable }⇔ { ( )u t < δ⇒ ( )y t <ε } (3) 
In the present paper, mainly concepts concerning the 
internal stability will be examined. In such a case of the 
initial state-to-future state framework, only an internal 
causality structure, reflecting a time orientation property 
of the causality relation, describing a collection of all 
state trajectories, is appropriate: 
                 [ ] 0( ) ( ) , ( ) nt t t X R= ∈ ⊂x f x x               (4) 
Definition 1: (Internal stability of an equilibrium state) 
The equilibrium state x* of the internal system 
representation (4), defined by 
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                               f(x*)=0           (5) 
is:   Stable (in the sense of Lyapunov) if, for each ε > 0, 
there is δ = δ(ε) > 0:  
           *

0 0( ) ( ) ,t t t tδ ε<− ⇒ − < ∀ ≥*x x x x        (6) 

Asymptotically stable if it is table ( Eq. (6) ), and  δ  can 
be chosen such that: 

               
*

0( ) ( )tt lim tδ →∞<− ⇒ =*x x x x            (7) 

 
 
3   State energy-metric and dissipation 
     normal form 
As an alternative to the well-known physical energy 
motivated method of Lyapunov functions, a new 
conceptually different approach to stability problems has 
recently been proposed in [3-10] and called the signal 
energy-metric approach. The crucial idea is that, in fact, 
it is not the energy by itself, but only a measure of 
distance from the system equilibrium to the actual state 
x(t), what is needed for stability/in-stability analysis. 
Thus a state space metric ( ),tρ   

*x x , where x*denotes 

the equilibrium state, has been defined, and the basic 
idea of a new  state energy-metric approach is then 
formally expressed by:    

                      21( ) ( ),
2

E tρ  =  
*x x x                        (8) 

To avoid confusion the concepts of the signal power and 
that of state energy for system representations { }Sℜ  
with ( ) ( ) =f x A x x  are defined first: 

               
0

0( ) [ ( )] ( ), ( ) ,
( ) ( )
t t t t
t t
= + =
=

x f x Bu x x
y Cx

           (9) 

Let the immediate value of the output signal power and 
corresponding value of the system energy, accumulated 
in a time instance t in the state x(t) be defined: 

    
2 2

, , d ( )( ) ( ) ( ) ( ) ( ), 0
d 
EP t t E t t P t

t
δ δ= = =− >xy x   (10) 

Putting 0( ) ,t t t= ∀ ≥u 0  and computing the derivative of 
the energy [ ( )]E tx  along the equivalent representation 
of the given system we get the signal power balance 
relation  in the form 

         2d ( ) ( )[ (.) + (.)] ( ) ( )
d

T TE t t t
t
ξ δ= = −x A A x y    (11) 

and, by integration, the energy conservation principle for 
a proper chosen equivalent state space representation 
follows. Hence, in case of zero input u(t) = 0, t ≥ t0 , the 
total energy accumulated in the system in time t0 must be 
equal to an amount of the energy dissipated on the 
interval [t0 , ∞) by the output:  

   
0

2
0( ) ( )

t
E t t dt

∞

= ∫ y        (12) 

It follows that a special form of a structurally dissipative 
state equivalent system representation called dissipation 
normal form exists and is given by matrices: 

1 2 1

2 3 2

33 4

11

0 0 0 0
00 0 0 0
0

0 0 0 0 ,

0 0 0 0 0 0
0 0 0 0 0 0 0

,T

n nn

nn

α α β
α α β

βα α

βα α
βα

γ                                                         

−−

−
−

−= = =

−
−

A C B

  (13) 

Structure of this representation is shown in Fig. 1. 

 
Fig. 1. Physically correct structure of the given 

representation 
 
 
4   Dissipativity, conservativity  
     and instability 
Recall that according to Liouville’s theorem of vector 
analysis, dissipative systems have the important property 
that any volume of the state space strictly decreases 
under the action of the system flow [11-20]. For 
nonlinear systems with state velocity vector given by a 
vector field f, the property of dissipativity is defined: 

                            
1

0
( )

div ( )
n

i

i i

f
x=

<
∂

=
∂

∑ x
f x                   (14) 

Thus a system defined by a matrix A(.) is dissipative if  
A  has negative trace  
                                Trace A = -α1 < 0                  (15) 
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Nonlinear systems having at an equilibrium state a 
dissipative approximate linearization are locally 
dissipative in a vicinity of this equilibrium state, but 
need not to be globally dissipative. Similarly systems 
with vanishing divergence                                                                
                       1div ( ) 0 0α= ⇒ =f x               (16) 
preserve volume along state trajectories and referred to 
as conservative. Hence, if a system is neither dissipative, 
nor conservative, instability appears.  
 
 
5   Dissipativity,  minimality  
     and asymptotic stability 
In this part mainly some elementary consequences of  
dissipativity and the energy-metric approach from 
stability analysis point of view will be discussed. We 
demonstrate that the set of real parameters αi, γ, βi 
satisfy the conditions: 
1. α1 < 0  is sufficient for instability                                             
2. α1 = 0, or α1 > 0  is necessary and sufficient for   
    stability (in the s. of L.) 
3. α1 > 0  is necessary for asymptotic stability 
4. { }2 3 0 0 0, , ,..., : , , :i ii i n iα βγ∀ ∈ ≠ ≠ ∃ ≠ ⇔  
     structural minimality             
5. { }2 3 0 0, , ,..., : , ,ii i n α γ∀ ∈ ≠ ≠ ⇔  
     structural observability            
6. { } 12 3 0 0, , ,..., : , ,ii i n α α >∀ ∈ ≠ ⇔  
     structural  asymptotic stability                
Example 1.  (Stability/instability analysis of an n-th 
order linear system) 
Let us consider a system for n = 6, and for the input 
signal 

0
( ) 0,u t t t= ≥ , given by the linear differential 

equation with constant coefficients 
      (6) (5)

1 4 5 6... ( ) ( ) ( ) 0y a y a y t a y t a y t+ + + + + =    (17) 
and let the internal structure of the corresponding state 
space representation is given in the dissipation normal 
form with the characteristic polynomial P6(s) given 
recursively by the relations 

            
0

2
1 2

1 1,     ( ) 1

( ) , 2,3,...,

 ( )
k k k k

s and

P s s P P k n

with P s sP
α

α
− −

=

= + =

= +
             (18)  

Now, let all the parameters a1, a2,…, an of  Pn(s) be 
considered as unknown, and let us specify the region of 
asymptotic stability in the parameter space.  Recall that 
the necessary and sufficient condition for existence of 
the unique equilibrium state x*= 0 can explicitly be 
expressed as   

                 
2 2 2

6 2 4 6
1

2 4 6

det 0

0, 0, 0

a α α α

α α α−

⇔= = ≠

∃ ⇔ ≠ ≠ ≠

A

A
       (19) 

The parameters ai of the characteristic polynomial P6(s) 
are given by the following set of algebraic equations 
with the unique general solution: 

     

1 1
2 2 2 2 2

52 2 3 4 6
2 2 2 2

53 1 3 4 6
2 2 2 2 2 2 2 2 2

5 54 2 4 6 3 6 4 6
2 2 2 2 2

5 51 3 6 1 4 6
2 2 2

6 2 4 6

1 1 1

1 2 3 2
2

1 1

2 2
1 2 3 3 1 4 3

3
1 2 3 1 2 1

3

( )
( ) ( )

( )

,

( )

k k
k

k

a
a
a
a
a
a

a
a a a

a

a a a a a a
a a a a

α
α α α α α
α α α α α
α α α α α α α α α
α α α α α α α
α α α

α

α

α

α −

=

= + + + +

= + + +

= + + + + +

= + +

=
= =∆

− ∆= =
∆

− − ∆= =
− ∆ ∆

∆ ∆=
∆ 2 1

  ,    = 4, 5, 6, ... ,  
k

k n
− −∆

  (20) 

It is easy to see that for any finite order, the new 
parameters ∆k, k= 1, 2,…,n can be expressed as diagonal 
minors of the well known Hurwitz determinant. In order 
to use energy monotonicity test like the Eq. (1) we have 
to compute the derivative of the output signal energy 
function E[x(t)] along the system representation { }Sℜ  
given by the matrices (13) in the dissipation normal 
form: 

               

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3 5 5

5 5 4 6 6

6 6 5

( ) : ( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )
( ) ( )

S x t x t x t
x t x t x t
x t x t x t
x t x t x t
x t x t x t
x t x t

α α
α α
α α
α α
α α
α

ℜ =− +
=− +
=− +
=− +
= − +
=−

       (21) 

                    
{ }

1
2 21
1 2

d ( ) ( ) ( )
d s

E t x t y t
t

αα
γℜ

= − = −       (22) 

where γ  is a real output signal scaling parameter 
0<γ<∞. Thus, the state energy E[x(t)] decreases 
monotonically (for real γ ≠ 0, and y≠ 0), if and only if: 
             2

1
2( ) ( ) 00  P t y t γα = >= > ⇔            (23) 

i.e. real output dissipation power is positive, and vector 
field f=Ax  is dissipative. It can be seen directly from the 
Eq. (22) that for α1 = 0 the system is conservative if and 
only if its complete state is unobservable by the output 
signal (γ2 = α1= 0). It means that the equilibrium state 
can not be unstable if the system representation is 
dissipative, conservative, and/or totally unobservable. 
On the other hand if α1 < 0, then we have 
  2

1
2( ) ( ) 00  P t y t γα = <= < ⇔          (24) 
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Consequently, the output signal scaling parameter γ and 
(for real state) also the output signal itself have to be 
considered as imaginary. In analogy to non-active 
electrical power, it seems natural to conclude that: if an 
active output power becomes negative, its positive value 
should be interpreted as non-active. 

 
Fig. 2. Evolution of output power P(t) 

a) conservative case α1 = 0, b) stability α1>0, α3=0, c) 
stability α1 >0, α5 =0, d) asymptotic stability α1 >0,  

αk ≠ 0, k = 2,3,…,n, e) instability α1< 0 . 

 
Fig. 3. Evolution of state energy E[x(t)] 

a) conservative case α1 = 0, b) stability α1>0, α3=0, c) 
stability α1 >0, α5 =0, d) asymptotic stability α1 >0, 

αk ≠ 0, k = 2,3,…,n, e) instability α1< 0. 
 
     It is easy to deduce from the Eq.(22) that for α1 < 0, 
the velocity vector field is anti-dissipative, and instability 
of the zero equilibrium state results. From the existence 
of a unique equilibrium state point of view Eq. (19) it 
follows that not only the dissipation parameter α1, but 
also the interaction parameters α3, α5 can be chosen 
arbitrary. Notice that if we put α5=0, then the state 
variables xi, i=5,6 become unobservable by the output y; 
thus only the first isolated subsystem with the state 
variables xi, i=1,2,3,4, which is observable, will be 
asymptotic stable, while the second one will oscillate on 
the constant  energy level, (see Fig. 2. for course of the 
signal power and Fig. 3.  for the state energy evolution), 
corresponding to its initial state energy with the 
frequency given by the natural frequency parameter α6. 
As a result the whole system is stable in the sense of 
Lyapunov, but not asymptotically. In such a case the 
polynomial P6(s) becomes:  

          
4

2 2
6

1

( ) ( ) ( )i
i

P s s s sα
=

= + −∏                    (25) 

and we get the set of standard algebraic stability 
conditions  
   Re si <0,  for i = 1,2,3,4, and  Re s5 = 0, Re s6 = 0   (26) 
Similarly, if we put α3 = 0, then the state variables xi, 
i=3,4,5,6  become unobservable by the output y, and 
only the first isolated subsystem  

          
1 1 1 2 2

2 2 2

1

( ) ( ) ( )

( ) ( )

( ) ( )

x t x t x t
x t x t
y t x t

α α
α

γ

= − +
= −
=

       (27)              

which is observable, will be asymptotic stable, while the 
second one will oscillate on  the constant  energy level, 
(see Fig. 2, 3), corresponding to its initial state energy 
with frequencies given by the natural frequency  
parameters α4, α6, modified by the interaction 
parameter α5. Again, the whole system is stable in the 
sense of Lyapunov, but not asymptotically. The 
characteristic polynomial is: 

  
1

6
2 2

2
3

( ) ( ) ( )i
i

P s s s s sα α
=

= + + −∏                (28) 

and the set of standard algebraic stability conditions 
results: 
      Re si<0,  for i=1,2 and Re si=0,  for i=3,4,5,6      (29) 

 
Example 2. (Asymptotic stability analysis of an n-th 
order linear system)  
It is easy to prove in general that the conditions 
mentioned above are necessary but not sufficient for 
asymptotic stability. If, in addition, the couple (A, C) has 
the well known observability property, then the resulting 
conditions become necessary and sufficient for 
asymptotic stability, too. 
     Let n = 6, and the matrices A and C are given by the 
Eq. (13); recall that the observability matrix H0 is 
defined by 
              2 1

0 [ ; ; ( ) ;...; ( ) ]T T T T T T n T−=H C A C A C A C      (30) 
and the set of necessary and sufficient observability 
conditions has the form: 

               0 2 3 4

5 6

0 0 0 0
0 0, 0

, , ,
               ,
det

γ
α α α

α α ≠

≠ ⇔ ≠ ≠ ≠
≠ ≠

H     (31) 

Thus the set of necessary and sufficient conditions of 
asymptotic stability reads: 
                      αk ≠ 0, k∈{1,2,...,6}, α1 > 0,                (32) 
Using the expressions (18), it is very easy to prove that 
the resulting conditions (30) are equivalent to the set of 
the well-known Hurwitz conditions: 
                           ∆k > 0,   k=1, 2, …, n                        (33) 
It has been clearly demonstrated that linear algebraic 
methods for stability analysis can be seen as a special 
case of methods based on the proposed signal energy-
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metric approach. Moreover, the state energy 
interpretation makes it possible to gain a better insight 
into classical results.  
 
 
6   Analysis of asymptotic stability of  
     non-linear systems 
Example 3.  (Non-linear asymptotic stability analysis)  
Let us consider a simple non-linear system given by the 
representation: 
            2

2 0( ) ( ) ( ) ( )y t y t y t a y tε α β + − + =         (34) 

Let the matrix C is defined by C=[γ, 0], and the 
structure of the matrix A(x) is 

           
1 2

1 23
1 2

2 0

,
( , )

,

x a
x x

a

ε α β  − −  =
 − 

A          (35) 

The system representation is locally observable if and 
only if γ≠0, a2>0, and                                          

  2 2
1 1

( )

1

3

d
0

d

( )
( ) ( ),

s

E t
P t P t x x

t
ε α β

ℜ

 = − ≤ = −  
 (36) 

i.e. the state x*=0 is asymptotically stable in the region 
D⊂X⊂R2 . 
Example 4. (Generation of Lyapunov functions using the 
state energy function)  
Let us consider the same non-linear system but instead 
of the structure of A(x) the state x(t) is defined by the 
standard way: x1=y, x2=dy/dt. Then the unique Lyapunov 
function V(x) can be determined by isometric 
transformations of the energy function E(.) and for  
α=β=a2=1 we get: 

      1 1 2 22 6 2 4 2 2 3 2
1 1 1 1 2 1 2 22 9 3 3(1 ) 2

( ) ( )
x x x x x x x x

V E
ε ε ε ε ε − + + − + + 

==x x
   (37) 

and for the linear conservative special case (ε = 0) it 
reduces to 

         [ ]2

2

2 2
1 2

1 1

2 2
( ) , 0( )V E x x ρ 

 
 

== = +x xx        (38) 

Example 8.  (State energy and mechanism of chaoticity 
in a causal system) [21, 22]. 
Let a 4th order system with chaotic behavior state be 
given by: 

1 1 1 2 2

2 2 1 3 3

3 3 2 4 4

4 4 3

x x x

x x x

x x x

x x

α α

α α

α α

α

= − +

= − +

= − +

= −

1

2

3

4

2
21 10

1

1

2.00

xα

α

α

α

α

− +  
  
  = =   
  

      

,

0

0
(0)

0.5

0

x =

 
 
 
 
 
 

(39) 

Projection of chaotic state and state energy evolution of 
this example are shown in Fig. 4 and 5. 

 
Fig. 4. 3D-Projection of chaotic state 

 

 
Fig. 5.  State energy evolution 

 
 
7   Conclusion 
In the contribution a new unifying and constructive 
approach to linear and non-linear stability problems, 
based on a state-energy-metric of the system state space, 
has been presented. 
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