
Towards Dependable Software: Researching Work-Flow Gaps in the

Distributed Organisations

DENISS KUMLANDER

Department of Informatics

Tallinn University of Technology

Raja St.15, 12617 Tallinn

ESTONIA

kumlander@gmail.com http://deniss.kumlander.eu

Abstract: - Dependable: reliable, secure, having high availability and safety, supporting continuous

development concept of software development has become to be very important as an opposite to bad software

customers are complaining about. Moving towards dependable software requires understanding of common

problems and finding other ways than just testing to produce such reliable software. In this paper work-flow

gaps that are specific to distributed organisations are revised. Unwillingness to travel for long distances,

communication gaps, lack of information and process monitoring, weak collaboration and teams’ internal

“wars” for organisational resources are main troubles. Those should be addressed and forecasted rather than

afraid or faced. It is the only way to enjoy advantages of the distributed organisations without having too big

risk.

Key-Words: - Work-flow gaps, distributed organisations, dependable systems

1 Introduction
The high price of improperly developed, incorrectly

designed and/or inconsistent products is paid

nowadays by many frustrated users. Researches

shows that nearly one third of all projects fail

because customers are not satisfied with the

delivered software [2]. A situation with “successful”

projects is not much better: only 20% of

functionality (in average) is used “often” or

“always” and 16% “sometimes”. The remaining

64% is either never used or used just occasionally

[5]. Bad software is actually not a new trend.

Customers are started to complain practically right

after software started to appear. During all those

years software development process has passed

several evolutional changes and lately strictly

formalised process of requirements specifications

and automated verification systems [3] were aimed

to solve all those problems. Unfortunately some

important problems remained still open. It happens

mainly because testing is not the only way to

improve the result and its’ cost is much higher than

any other possible improvement during projects

because testing is done during a relatively late

project phase. In recent years, dependability - an

integrative concept comprising such criteria and

sub-criteria as reliability, security, continuous

development, availability, safety [1, 8] - has become

to be a very important concept. Moreover the

dependability is important for many life-critical

systems where many modern concepts cannot be

applied. Those are mostly produced for the business

sector software and are aimed to maximised

functionality and minimise the cost sometimes

compromising its quality. This is not acceptable in

avionics, vehicle control, submarine software

systems and so forth.

 In this paper different types of gaps occurring in

projects’ work-flows are researched to identify

major problems that lead to bad software appearance

in order to address them properly and enable to

move the software development process toward

construction of dependable systems.

2 Distributed organisations
A distributed organisation in the context of this

paper means an organisation that has the following

properties:

• It has more than one office;

• Offices are located on a sufficient distance

from each other (i.e. those are not located

on different floors of the same building, but

are located in different towns, countries or

even continents);

• All those offices do participate in the core

business activity (in our case in the software

development process) and none of those can

be removed without destroying the process

flow. In other words those offices are not

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 206

something like sale offices elimination of

which means just loosing some sales in

certain areas and doesn’t affect future

release of the main product.

 There are much more distributed organisations

than it looks like at the first glance. The larger a

company become, the more is probability that it will

be distributed one although a lot of starters are

single-location companies. Below a short list of

major reasons while companies do become

distributed is presented.

 All those reasons can be divided into two groups,

where the first one contains cases, when a company

is changed to the distributed one by its own wish,

and the second group contains cases, when the

company had to become distributed because of

either outside factors or decisions that were not

specifically done due advantages of being

distributed (so some other considerations were main

drivers converting a single-located company into the

distributed one).

• Companies become distributed by their own

wish since:

o The development process will be

cheaper. For example an organisation

can establish an office in another

country, where developers cost per

hour is much lower than in the “native”

country. Basically we could include

into this reason also organisations that

are using outsourcing, although

principles of how over-sea branches

are controlled can vary considerably. It

is worse to notice that outsourcing is

used nowadays more and more as a

result of the following issue as well;

o A misfit of a skilled personnel

location(s) and product markets. It is

possible to identify here two subgroups

of reasons, which looks very similar

initially. The first one is formulated

from perspective of a company selling

independent products in many

countries: a product is not developed in

countries where it will be sold as the

development is concentrated in

dedicated development centres all over

the world. The second group of reasons

is formulated either from a single

product companies perspective (of is a

number of products is limited) or from

a single market one – the company

wish to develop product in one central

place, but has to distribute itself since

there is no enough skilled developers in

the “native” (markets) areas, so other

teams are established somewhere else.

Notice that here the distribution

doesn’t happen to decrease the cost of

development, but rather to have an

opportunity to develop a product using

other work/force markets. Moreover

the cost of development could even

grow, if a team of highly professional

specialists is hired.

• Companies become distributed because of

external (concerning a decision to become

distributed) reasons:

o A company could become distributed

after buying other companies located in

other geographical regions and

including their products or/and teams

into the core activities or products’

lines;

o Company branches have to work

together although it wasn’t planned so

initially. For example, each group was

independent some time ago (were

building isolated products for isolated

markets), but starting from some

moment they have to integrate their

software;

o Globalization of operations, i.e. a need

to extend business into other countries.

This reason often forces an

organisation to extend products

functionality by anticipating other

countries’ requirements or establish

there teams for bespoken projects. In

the last case this isolated team can be

included into the main team later

(versus - will have to work together

with the main team as their features are

included into main / standard product);

o A need to cooperate with partners in

other countries, integrate software etc.

 This list of reasons demonstrates, from our point

of view, that a distributed company is not an

artificial, purely theoretical case, but rather is a

reality that our world faces nowadays. The number

of such companies permanently grows because of

globalisation and improvements of e-channels

improving branches communication process. On the

whole until now we have been only talking about

why companies do become distributed, and what are

advantages of this decision. The next chapter

discusses what drawbacks are.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 207

3 Work-flow Gaps
A work-flow gap is a certain trouble that negatively

affects the normal flow of the work process. The

negative effect can have many faces and some of

them are listed below. First of all a gap can corrupt

outputs of a certain project stage corrupting the

whole work flow. As a result the work flow could

include invalid routes; the following stages could

produce incorrect results and so forth. Secondly the

gap can be so serious that it will not be possible to

continue at all or the discussion will go into some

kind infinitive loop. Finally a gap can slow down the

work process (so it is not corrupted, but the effect is

surely negative).

 The “certain trouble” part of the definition refers

to the fact that there are different types of the gap.

For example a communication gap was defined in

our earlier articles as a problem in the

communication process that makes the transferred

information to be either lost or deformed [6]. In this

chapter we are going to analyse the distributed

organisations case and identify gaps that are specific

for it within the software development process.

 First of all let us mention a problem that is

produced directly by the distance between sites – a

lot of workers are not willing to spend their own

time out of their homes as business trips normally

require. During such trips an employee is usually

restricted in his/her private time wasting

opportunities, cannot spend evenings with his/her

family etc. This affects the normal work flow if such

persons are key persons in an organisation and their

replacement is not always a way to solve this

problem because of shortness of skilled personnel

and high competition among companies nowadays.

For this reason a company should be looking for

more communication ways before those troubles

will lead to any sufficient problems.

 Secondly, basing on our consultancy experiences,

we can claim that a lot of modern software

development models are showing ideal results only

in ideal environments, when all team members have

no restrictions communicating to each other and

moving a project forward. Unfortunately the real life

is much more complex and the distributed

organisations case is one of those. In practise there

is a lot of communication gaps that do really affect

the work-flow a lot. Of course, some of those gaps

are connected to distributed organisations and some

of them are not. Anyway communication gaps are

gaps, where information, which is send, is corrupted

during the transition process and therefore doesn’t

equal to the received one. There is a list of major

communication gaps’ types.

• Difference between persons in skills,

backgrounds and experiences. It is also

possible to include into this group culture

differences, which is usually the only

communication gap that is mentioned.

• Restrictions on communication like having

to phone up, send emails etc. instead of

talking face to face. Different articles say

that the visual feedback provides from 20%

to 40% of information [4, 7]. So, the lack of

the visual feedback of an opponent reaction

sufficiently restrict opportunities to

understand each other and increase

probability that information will be received

incorrectly and as a result produce a lot of

problems. Of course this issue depends a lot

on facilities in use – modern technologies

make the communication process much

more transparent. Unfortunately not all

companies do use those technologies and

those will anyway not be able to eliminate

the “none visual” communication effect

completely.

 There is another important issue, which is partly

connected to the communication gaps that were

discussed above. A work flow communication

always goes from one person to another

synchronously with moving a process (project) from

one stage to another. Here under a communication

from person to person we mean a process of

transferring information. Mostly it is a process of

sending outputs of one stage to trigger the next one.

If any person that is involved into this chain is weak

in getting or sending information then it will corrupt

information, outputs and requirements greatly

affecting a project’s end result. Notice that although

this issue exists in all companies the more

distributed the company is the more dramatic effect

the weak part of the chain will have on the project.

 One more typical gap appearing in the distributed

organisations is quite a weak monitoring of the

situation over an edge connecting distributing

offices. A manager cannot be in another location

each day and have to overcome a sufficient distance

to reach the monitored location. Usually he is using

other channels instead of travelling and those are

rather restricted in compare to face-to-face

communication and possibilities to see everything

by his own eyes. In that case the risk of project’s

failure is growing. Sometimes consequences are not

so dramatic, but rather numerous and stable –

inability to meet a schedule after finding that

developers have not reported their actual work

progress, misfit of certain functionalities, knowing

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 208

nothing or a little about team members abilities and

skills etc.

 As it is complex to communicate and monitor

teams over a distance the team on another end (in

compare to the managers’ location) is often

organised as a partly self-sufficient. Sometimes such

team becomes more and more independent. The

main reason of this is a lack of collaboration. As a

result of this segmentation process each such team

starts to fight for resources against other teams

within the organisation forgetting to care about

customers. This means that the company starts to

produce customer unfriendly product; products that

do anticipate just high level requirements, i.e. are

having total misfit in details (either wrong

realisation, or unusable in practise). Those products

are neither reliable nor dependant.

 The next problem is similar to the previous

monitoring one, but is formulated from the other

team point of view, in other words form a

perspective of a team that is located far away from

the management centre. The distance team usually

has also a little information about what is happening

on another end. As a result, it makes harder to plan

their work properly as there is no info on future

plans, releases, specifications etc. The smallest

consequence of it will be improper time spent, for

example because of re-doing things due new plans

although feature could be developed properly

knowing all requirements and required

enhancements. The more sufficient consequence can

be stress from doing an empty work/redoing it,

decreased motivation to do the work (as anyway it

should be probably redone) and so forth.

 The early mentioned need to communicate over a

sufficient distance has more effects on the work

flow than just certain restrictions on the

communication channels, i.e. on information that is

sent. The distance slows down the communication a

lot. First of all people in many cases need to

communicate over emails and this produces

messages ping-pong with a slow reaction on each

message. Of course emails are useful when you do

need time to re-think your answer or collect more

information, but it cannot be seen an alternative to a

meeting where ad hoc answers are required.

Secondly it is very hard to organise meetings and

coordinate people activities especially if those are

located in different time zones. Besides key persons,

teams and ordinal employees are collaborating much

less. This can lead to a work (for example a

research) that is done twice or more within one

organisation as others don’t know what others did

before. Finally we arrive to the problem that is the

most important one from our point of view. It is not

possible to force somebody to do anything over such

a distance or at least it is really problematic. For

example you cannot just walk into a business

analyst’s office and asks him to have a quick look

on the project to discuss stopovers. Notice also that

people tend to react lowly on phone calls by either

not answering to those or having it without enough

respect.

 Sometimes companies that are facing all those

problems try to establish a highly formal and

hierarchical structure of the work- and information

flows by specifying strict rules of moving from

stage to stage, from department to department (read

from person to person). The main danger of this –

there is not way to restore missing information if

any node of this chain appears to be weak, i.e. if the

system is not self-restoring like a system when you

can verify results locating close to persons who

produced those by having heard something he was

talking (may be during informal conversations).

Summarising all we said about formalising the

process, we could state that: from one hand

formalisation allows establishing a system ensuring

avoiding some types of gaps, from another hand it

practically always means no unofficial contacts, i.e.

cuts all alternative communication channels by

relying exclusively on the official one, which also

could have drawbacks.

4 Conclusion
The price customers are paying nowadays for faulty

or incomplete software delivered by many software

vendors is very high. The number of never used

features is very high and is also a sign of bad

software. In recent years, dependability - an

integrative concept comprising such criteria and

sub-criteria as reliability, security, continuous

development, availability, safety [1, 8] - has become

to be a very important concept of software

development. Moving toward dependable software

requires understanding of common problems to find

ways, others than testing, to produce reliable

software. In this paper work-flow gaps that are

specific to distributed organisations were reviewed.

Unwillingness to travel, communication gaps, lack

of information and process monitoring, weak

collaboration and teams internal “battles” for

organisational resources are main troubles. Those

should be addressed and forecasted rather than

afraid or faced. It is the only way to enjoy

advantages of the distributed organisations without

having too big risk.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 209

References:

[1] A. Avizienis, J.C. Laprie and B. Randell:

Fundamental Concepts of Dependability.

Research Report N01145, LAAS-CNRS, April

2001.

[2] E. N. Bennatan, K.E. Emam, Software project

success and failure, Cutter Consortium, 2005,

http://www.cutter.com/press/050824.html

[3] T.T. Dinh-Trong, A Systematic Approach to

Testing UML Design Models. Doctoral

Symposium, 7th International Conference on the

Unified Modeling Language (UML), Lisbon,

Portugal, 2004, pp. 10-15.

[4] K. Hadelich, H. Branigan, M. Pickering, M.

Crocker, Alignment in dialogue: Effects of

visual versus verbal-feedback, Proceedings of

the 8th Workshop on the Semantics and

Pragmatics of Dialogue, Catalog'04, 2004, pp.

35-40.

[5] A.A. Khan, Tale of two methodologies for web

development: heavyweight vs agile,

Postgraduate Minor Research Project, 2004, pp.

619-690

[6] D. Kumlander, Software design by uncertain

requirements, Proceedings of the IASTED

International Conference on Software

Engineering, 2006, pp. 224-2296.

[7] R. Ludlow, F. Panton, The essence of effective

communication, Prentice Hall, 1995.

[8] B. Meyer, Dependable Software, Dependable

Systems: Software, Computing, Networks,

Lecture Notes in Computer Science, Springer-

Verlag, 2006.

Proceedings of the 7th WSEAS International Conference on Applied Informatics and Communications, Athens, Greece, August 24-26, 2007 210

