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Abstract: This work treats hybrid systems that concern some aspects of the discrete states and some aspects of 
stability. I show a way through we can determinate automatically a fundamental cycle in a hybrid system, which 
is useful for hybrid systems with many states. Another aspect from this paper is to present a way to determinate 
a switching sequence which assures the stability in a LTI switched systems, a special case of hybrid systems. 
Also, I give some examples. 
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1 Introduction 
A switched systems is a hybrid systems which 
consist of several subsystems and a rule that switch 
control the switching among them. The problem of 
switching stabilization is to find a switching rule 
which to make the switching system stable or, better, 
asimptotically stable. The stability which is 
considerated is in the sense of Lyapunov. In 
literature the problem of stability was extensively 
studied. The reader can consult recent developments 
in [7], [11]. There are several constructive design 
procedures in [16], [17]. An another tool is given by 
Lyapunov-like functions which were introduced to 
cope with intrinsic discontinuous nature of switched 
systems and it can be consulted [4], [14], [18]. 
 The obtain one sequence of Lyapunov functions 
is a priority in hybrid systems field. Different results 
for stability with Lyapunov functions can be found in 
[5]. An hybrid automaton is a mode to represent a 
hybrid system. Some details can be found in [12], 
[15]. More, the idea to use graph theory in hybrid 
system was adopted by Hogan and Homer in [9]. The 
contribution of this paper is the finding one 
switching scheme for stabilization of a switched 
linear systems. I introduce the notion of hybrid graph 
and I use an algorithm to find a fundamental cycle in 
a hybrid systems. 
 
 
2 Preliminaries 
Let Rn denote the nth-dimentional Euclidian real  
space and let the system be 

 

.     ,
))(),(()(

)),(())(),(()( )(

⎪⎩

⎪
⎨
⎧

=

≡=
−tqtxstq

txftqtxftx tq&

with    initial    conditions     
 

( ) ( ) 0000 , itqxtx == , (2) 

 
where x(t) ∈Rn is the continuous state vector and q(t) 
∈Q = { }Qn,...,2,1  is the discrete state. The hybrid 
state space is H = Rn × Q, being a combination 
between continuous and discrete spaces. Sometimes, 

)())(( )()( txAtxf tqtq ⋅= , where if the matrixes A are 
constants, we have linear time-invariant (LTI) 
switched systems. 
 
 
2.1 Fundamental cycles 
A fundamental cycle is a closed sequence of discrete 
states where each occurs once, i.e.  
 

121 ,,...,, iiii d   where  for p ≠ q. qp ii ≠
 
In [8] it is shown that fundamental cycles is a means 
to describe the switch structure of a hybrid system. 
This notion is a step to find limit cycles. So, an 
isolated closed orbit is referred to as a limit cycle, 
where by closed orbit we mean that a state system 
maps a certain state into itself. It will appear a set of 
points on the switch sets, named switch points and 
using them can be determined the stability of the 
limit cycle. The stability can be found by discrete-
time Lyapunov theory and using LMI. All techniques 
are presented in [13]. 
 
 
2.2 Stabilizability 

(1) We are interested to find a switched sequence to 
stabilize the system. This means in the hybrid field 
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that we search a discrete sequence of commutation 
for that the state of the hybrid systems is stable. 
Lyapunov-like functions When  we considerate a 
system  and an equilibrium point )(xfx i=&

ix Ω∈ ⊂ Rn , a Lyapunov-like function is a real-
valued function Vi(x), with continuous partial 
derivatives, defined over the region iΩ  and 
satisfying the condition: 
a.positive definitess: 0)( =xVi and  for 0)( >xVi

xx ≠ ,  (often ix Ω∈ 0=x ) 
b.negative definite derivative: for  ix Ω∈
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We define a Lyapunov-like family {Vi, i = 1, 2 ,…, 
nQ}. So, we have from [7]: 
Theorem 1. Giving the M-switched nonlinear 

, suppose each vector field  f))(()( txfx tq=& i has an 
associated Lyapunov-like function Vi in region Ωi, 
each with equilibrium point 0=x , and suppose 

. Let q(t) be a given switching sequence 
such that q(t) can take on the value i only if x(t)∈Ω

n
ii R=ΩU

I, 
and in addition: 
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where ti,k denotes the kth time that vector field fi is 
“switched in” . Then the  (1) is Lyapunov stable. 

 
 

2.3 Switch sets 
The function s:H(=Rn × Q) → Q by s(x, i) = j, where 
x ∈ Rn and i,j ∈ Q, means that we have a change of 
discrete state from state i to state j. To put together 
all continuous states which are involved in this 
change, we define switch set. One image of the 
switch sets is in [13]. In [5] the notion of switch set 
is replaced by switch surface. So, the switch set Si, j is 
defined by  
 

{ }jixsRxS n
ji =∈= ),(,  

 
For every i∈Q, the vector field is 
assumed to be locally Lipschitz continuous. 

( ) nn RRif →⋅ :,

The switch set can be given by switch  functions. So, 
if a switch function is a map si, j: Rn → Rn, then the 
switch set can be defined as Si, j = {x ⏐ si, j(x) = 0}. 
Generally, the switch functions represent 
hyperplanes in the extended state space, i.e. 

jijiji DxCxs ,,, )( += . Let assume that we have for 
our system m switch sets. 
 
 
3 Problem Solution 
I introduce the notion of hybrid graph in order to use 
graph theory for a hybrid system. This use us to 
determinate automatically the fundamental cycles. 

I propose an algorithm that will assure the 
stability and a right choose of the switching 
sequence. We use the representation of the hybrid 
system by hybrid graph.  

The technique is the next: we start from a node 
of the hybrid graph and we search for the 
corresponding Lyapunov-like function another node 
for that we’ll have decreasing values in the sense of. 
Theorem 1 More, we can search for every switching 
another Lyapunov-like function for our conditions. 
 
 
3.1 Hybrid graph 
Definition 1. A hybrid node is an ensemble compose 
from a discrete state i and a motion trajectory 
corresponding to the state i, . ),( ixfx =&

So, for a discrete state i we add the trajectory for 
discrete state and in this way we guarantee move of 
the continuous state from discrete state i to next 
discrete state j. The evolution of the hybrid 
dynamically system’s  trajectory  from discrete  state  
i  to  discrete  state  j  is  conform  with 

),()( ixftx =& , or, write as f=)(tx& i(x). This trajectory 
reaches the switch set  Si,j from where it evolves 
conform with =)(tx& .fj(x). 
Definition 2. A hybrid graph is a graph where the 
nodes are composed from hybrid nodes and the edges 
of the hybrid graph are the switch sets corresponding 
for two discrete state.  

So, if we denote a hybrid node (i, ),( ixfx =& ) 
with hi, then the hybrid graph is a set of n nodes h1, 
h2, …, hn , where n is the number of the branches of 
the hybrid system. If we have m switch sets for the 
systems, then the hybrid graph will have m edges. 
The hybrid graph is a kindred notion of the hybrid 
automatons about which you can read in [12]. You 
can see an example of hybrid graph in Figure 1. (5) 

There is a aspect for fundamental cycles: to find 
them. Here we can help by the hybrid graph 
associated with a hybrid system (see Definition 2). 
Theorem 2. For the hybrid system (1) it can be 
determined if there are fundamental cycles and which 
are there the fundamental cycles automatically. 
Proof: The proof will be make in steps. 
Step 1. For the hybrid system (1) we find number of 
branches and associate the hybrid graph 
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corresponding. In Section 4 we have an example 
with 4 number of  branches (the same as discrete 
states) and the hybrid graph is shown in Figure 1. 
There is possible to add some switch sets. 
Step 2. For the hybrid graph, we associate a directed 
graph which is formed by the discrete states of the 
hybrid graph as nodes and the edges are 
corresponding with switch sets Si, j. In this way we 
have in example the directed graph from Figure 2. 
Step 3. We associate to the graph a matrix named 
adjacent matrix which is a   n-dimensional quadratic 
matrix and it is binary, where n is number of nodes. 
A[i,j] = 1 in the adjacent matrix A there is the switch 
set Si, j (and not Sj, i); otherwise it is equals to zero. 
For our example, we have the adjacent matrix 
A=(0,1,1,0; 0,0,1,0; 1,0,0,1; 0,1,1,0). Using the 
adjacent matrix we can give some information for 
such a directed graph using specific techniques and 
algorithms. First, through the depth  cross algorithm 
(or depth first algorithm) we know if there are cycles 
or not. 

An elementary cycle for a directed graph is a 
cycle in which every nodes are different, except first 
and last. An example of  not elementary cycle is 
1,3,4,2,3,1 because the inner node 3 is twice, but 
1,2,3,1 is on. To determinate possible fundamental 
cycles in the hybrid system is the same with to 
determinate elementary cycles in the associated 
directed graph. For our case the elementary cycles, 
and so the fundamental cycles, are: a)1,3,1; 
b)1,2,3,1; c)2,3,4,2; d)3,4,3 because the cycles 1,3,1 
and 3,1,3 are considered the same. To determine 
elementary cycles in the graph we can use a specific 
algorithm and a computer program and all can be 
done automatically. These algorithms are well-
studied and they can be found, by example, in [6]. 
 
 
3.2 Stabilization algorithm 
The idea to use algorithms in hybrid systems can be 
found in other papers, like in [1], [2], [3]. Another 
way in the stability of hybrid systems is through 
linear matrix inequality (LMI) and solve them in by 
LMI or SeDuMi Toolboxes from Matlab. 

I propose an algorithm which finds the discrete 
sequence of the switching in a hybrid system to 
assure the stability of this. The idea: we start from a 
node, let it say i1. Begging from this node and 
considerate the hybrid graph, we search a Lyapunov-
like function for this branch and another node that 
satisfies condition (4). The form of the Lyapunov-
like function is a quadratic form V(x) = xtPx, where  
P > 0. For a computational proper form of the V we 
use  the definition: a matrix A is positive-defined if it 
is symmetric and it has the dominant diagonal and 
aii>0 for 1<=i<=n. The algorithm is the next: 

Step 1 we associate the hybrid graph for the system 
(1) + the switch sets 
Step 2 we extract all discrete nodes from the hybrid 
graph and we form the directed graph 
Step 3 we search a fundamental cycles in the directed 
graph (using specific algorithms like depth first ). Let 
it be obtained in the I. Let IC be the set of choose 
points. Initial IC = φ. We associate adjacent matrix A. 
Step 4 FOR every i1 ∈ I we make the next actions: 
        4.1 WHILE IC ≠ I AND process is running: pr=1 
           4.1.1 IC = IC ∪ {i1}. 
           4.1.2 FOR all switch set which has i1 the first 

index 
                 4.1.2.1 we choose a point x1 ∈ switch set 

and we store the value val1 = V(x1) 
                 4.1.2.2 FOR every i2 ∈ I ─ IC (an 

unchoice node) 
                           4.1.2.2.1 search a Lyapunov-like 

function (using definition) 
                           4.1.2.2.2 find x2 in a proper mode 

xi2={ }∩S|nRx ∈ 11 ii bxAx +=& i1, i2

                           4.1.2.2.3 we store val2 = V(x2) 
                           4.1.2.2.4 pr=0 (we stop the process) 
                           4.1.2.2.5 IF we have condition (4) 

using val2 and val1 
                                         4.1.2.2.5.1 IC = IC ∪ {i1} 
                                         4.1.2.2.5.2 store Lyapunov-

like function 
                                         4.1.2.2.5.3 val1 = val2 
                                         4.1.2.2.5.4 i1 = i2 
                                         4.1.2.2.5.5 pr=1 
        4.2 IF we have pr=0, then the process was 

stopped: and we haven’t stability 
        4.3 IF pr=1, THEN we have a switched 

sequence  for all subsystems which stabilizes 
the hybrid system 

Step 5 We put again IC = φ and we go to the Step 4. 
 
Theorem 3. The solution IC of the above algorithm 
stabilize the hybrid systems. 
Proof: The discrete sequence stored into IC is 
composed from all nodes of the hybrid graph which 
means all nodes of the hybrid system. By the 
construction of the algorithm, for every node i which 
is chosen  to add to IC we store the Lyapunov-like 
function that satisfies the condition (4). This way 
assures decreasing values for the trajectory of the 
hybrid system in every switching. The point xi2 from 
the algorithm is the point on trajectory that intersect 
the switch set, so xi2={ |nRx ∈ 11 ii bxAx +=& } ∩ 
Si1, i2. The right choise of this point is made using the 
A[i1][i2] = 1 value from adjacent matrix and the 
equation of the switch set { ⏐CnRx ∈ i2⋅x + di2 = 0}. 
So, we have a discrete sequence i1, i2,…, in and a 
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corresponding decreasing value sequence Vi1(xi1), 
Vi2(xi2),…, Vin(xin) along the trajectory of the hybrid 
system that assures by Theorem 1 the stability. 
 
 
4 Examples 
Example 1. The first example is an example in which 
we present results for the fundamental cycles. We 
have a system which consist of two tanks and two 
on/off valves. The first valve adds to the inflow in 
tank one and the second valve is a drain valve from 
tank two; there is a constant outflow from tank two, 
e.g. caused by a pump. The tow discrete states of the 
valves result in four discrete modes with different 
continuous dynamics   

Without changing the settings of the valves, the 
tanks will either be flooded or drained. Switching is 
based on the water-levels x1 and x2 in the tanks. The 
notation xi is used for elements in the state vector.  

For each initial continuous state there is an 
associated unique initial discrete mode: q1=q(t)=1 
(off / off); q2=q(t)=2 (on / off); q3=q(t)=3 (off / on); 
q4=q(t)=4 (on / on). The above relations shows the 
discrete modes and state space regions where they 
are used as initial modes. Here, the systems is two 
dimensional. 

The modelling of the tow-tank system gives the 
hybrid system: H = R2 × Q is hybrid state space; Q = 
{q1,q2,q3,q4}is discrete state space (and it is identical 
with {1,2,3,4} by a bijection). The continuous 
dynamics on the continuous state space R2 are 

, where q ∈ Q. qq BtxAtx +⋅= )()(&
For the hybrid graph we associate the directed 

graph. The hybrid graph can be seen in Fig.1 and the 
directed graph can be seen in Fig.2.The elementary 
cycles for the directed graph are the  fundamental 
cycles for the hybrid graph. So, using a proper 
algorithm for the graphs and his implementation in a 
software, we have: a)1,3,1; b)1,2,3,1; c)2,3,4,2; 
d)3,4,3 because the cycles 1,3,1 and 3,1,3 are 
considered the same. 

 
Fig.1. The hybrid graph associated to the given 

hybrid systems. It consists of hybrid nodes. A 
hybrid none has discrete and continuous state. 

 
 
Fig.2. The directed graph associated to the hybrid 

graph. In this graph we can use the algorithms 
for cross and in this way we can determinate the 
cycles 
 
The importance of that theory to determinate 

automatically the fundamental cycles is better if the 
systems are more complex, with many nodes. In a 
same way, only the computer can determinates 
automatically and rapid the solutions. 
Example 2. In this example I give the result of 
algorithm from Section 3 about discrete sequence.  
For a two dimensional case, and 

)()()( )())(( tqtqtq BtxAtxf += , with values: 

;   ; ;  

 ;  we 

obtain first switch points P
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1 = (-1500  -2.1200)’; P2 = 
(0.1040 0.4268)’; P3 = (1.2119  -1.0159). This points 
belong to the three switch sets. The sequence for 
switching is 1 (with initial value P1), 2 (with initial 
value P2), 3(with initial value P3).  In Fig.3 we can 
see an aspect of the hybrid system. 
 

 
 

Fig.3 The trajectory and switch sets of the hybrid 
systems. P1, P2 and P3 are the points where 
trajectory intersects the switch sets. 
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5 Conclusions 
It has been introduced the hybrid graph notion, 
which is in relation with the graph theory. It has been 
show how to find fundamental cycles in a hybrid 
systems in a automatically way. The efficiency of 
this method is bigger for the big hybrid systems, with 
many nodes. Also, it was been presented an 
algorithm for finding the switching sequence in a 
LTI switched system which assure the stability. 
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