Abstract: E-Learning is not almighty, nor can it teach everything. On the other hand, e-Learning is very suitable for playing such auxiliary roles as help teachers estimate the effectiveness of their lessons or help students know the current status of their abilities. This paper presents an easy, enjoyable, effective automated practice and test system, which teachers can easily administer, and with which students can enjoy studying. The paper also describes the implementation of the Apty system. A teacher can install the system only by entering a password for the Apty administrator. The installation and complicated settings of a Web server and a database server are all automated. Students can view a list of all subjects only by accessing the homepage of the Apty system, and they can begin to practice any subject without login.

Key–Words: Customizable, examination, open e-Learning, practice, web applications

1 Introduction

E-Learning is not almighty, nor can it teach everything [1], [2], [3]. The sensation of frustration, loneliness and confusion, which some participants express, is the result of both, lack of involvement and participation of some students as their peers opted out, and lack of involvement and feedback on the part of the facilitator. It is said that women are more strongly influenced by perceptions of computer self-efficacy and ease of use, and that men’s usage decisions are more significantly influenced by their perception of usefulness of e-learning. We believe that what are most required for students to study a subject and understand it as far as they get satisfied are a good teacher and a good book (a textbook or a reference). It is a good teacher who teaches us plainly enough and step-by-step. It is a good book that helps a student when he or she reviews the subject and wants to understand it more deeply. On the other hand, e-Learning is very suitable for playing such auxiliary roles as help teachers estimate the effectiveness of their lessons or help students know the current status of their abilities.

Currently, there are a variety of e-Learning systems in the world [4], [5], [6], [7], [8]. However, we have difficulties in installing and administrating conventional e-Learning systems. Moreover, it may take a lot of time to develop the contents of courseware, or we might be forced to use ready-made courseware. Students need to perform several operations to reach the pages of interest because of the complexity of e-Learning systems.

This paper presents an open and customizable automated practice and test system, which teachers can easily administer, and with which students can enjoy studying. The paper also describes the implementation of the Apty system. A teacher can install the system only by entering a password for the Apty administrator. The installation and complicated settings of a Web server and a database server are all automated. Students can view a list of all subjects only by accessing the homepage of the Apty system, and they can begin to practice any subject without login.

2 Requirements

The aims of this system are to overcome the difficulties in the existing systems described in Section 1, and
to promote students’ motivation so that they can enjoy studying, and enable teachers to easily administer the system without any difficulties. To fulfill these aims, we take the following requirements into account:

Requirement 1 Easy and open
(R1-1) Installation and administration of the system should be easy.
(R1-2) An ordinary computer user can install and administer the system. They do not have to be a super user (root).
(R1-3) Without login, students can view a list of all subjects and they can begin to practice any subject. This facility will encourage students to get interested in the other subjects they are not currently studying.

Requirement 2 Enjoyable and stimulating
(R2-1) The top 10 scores appear in a subject homepage, and anyone can see these scores without login.
(R2-2) It should be possible for anyone to get the top score. This will cause the order of top 10 scores to change very often. This makes students study hard by competing with each other [9].

Requirement 3 Helpful and Customizable
(R3-1) Students can ask their teachers anonymously. Even if students hesitate to ask teachers directly, they can ask them without constraint.
(R3-2) Messages and images can be localized to any language in the world.
(R3-3) Any code can be specified for text files to be uploaded or downloaded.

3 **Apty system**

3.1 **Introduction to the Apty system**

This section describes the outline of the Apty system. Figure 1 shows the homepage of the Apty system. To make it possible for anyone to begin practicing any subject without login, we arrange a list of subjects in the left frame of the Apty homepage, and arrange the homepage of each subject in its right frame (R1-3). When a student clicks on a subject name displayed in the subject list in the left frame, the homepage of the corresponding subject is displayed in the right frame. In the top frame of the subject homepage, students can view subject information or take exams. In the bottom frame, students can view the practice scores. When they click on the “Practice” button displayed in the top or bottom frame, they can begin to answer questions for practice. By this facility, anyone can view the examples of questions of the subject they are interested in, and come to understand what they can learn from that subject without registration of courses.

When a student clicks on the “Ask question” link in the top frame, he or she can ask the teacher in charge of that subject anonymously (R3-1). As shown in Fig. 2, this system is basically open to anyone. Anyone can access this system to start practicing, see top 10 scores of examinations and practice, ask questions, and see feedback messages. On the other hand, only registered students are allowed to take examinations, review, answer a questionnaire, and see their scores.

At present, the homepage of subject Trivia is shown in English. Actually, all messages and images the Apty system displays can be localized to any lan-
The Apty system consists of a Web server (Tomcat) and a database server (Postgresql). The database server administers aptydb database that stores the subject information of each subject, and subject databases, each of which is created when a subject is created. Students use a Web browser to access the Web site of the Apty system.

3.2 Installation method for the Apty system

We have developed an installation tool to make it easy to install the Apty system. A teacher can install the Apty system only by entering a password as the Apty administrator (R1-1). A default directory will be automatically displayed for an installation directory. As for the port numbers of Tomcat and Postgresql servers, this tool automatically finds the appropriate vacant ports to display their numbers. To make it possible for an ordinary computer user to install and administrator the system, the system ports’ numbers such as 80 (http) and 443 (https) are not used at default setting (R1-2).

When a teacher clicks on the “Install” button, installation begins. Unlike the conventional systems, this tool sets appropriate port numbers for Tomcat and Postgresql servers, creates a subject database that includes an example subject Trivia, sets the database password the teacher specified, starts the Apty system, and then opens the Apty homepage by starting a default Web browser.

4 Implementation

4.1 Administration method for subjects

The Apty system uses aptydb database that stores the subject information of each subject, and subject databases, each of which is created when a subject is created. Any number of subjects can be created by the Apty administrator, who installed the system. The aptydb database has DB table “subjects”, which contains a subject name, subject no., subject icon, subject locale, subject administrator ID, subject administrator password, and so on for each subject. A subject database has such DB tables as a problem group, problems, tests, testProblem, testTime, examScore, and so on. The problem group DB table contains a problem group name, a problem group title, the number of choices, and so on for each problem group. The problem DB table is created for each problem group and contains the fields of a problem no., problem statement, choices, chapter, section, advice, and so on. The testProblem DB table defines which problems of each problem group will be set for each test. The testTime DB table defines when each test starts and ends.

For a security reason, we have designed the system so that these DB tables can be accessed only by the Apty administrator. Any teacher who is given a subject administrator ID and password by the Apty administrator becomes the subject administrator of the corresponding subject, and he or she can control all information of that subject. However, they can only access these DB tables through the Apty system by using a Web browser.

As described in Section 4.3, to make it possible to customize home messages, styles and images for each subject, each subject has its own configuration files independently. As shown in Fig. 3, each time a subject is newly created, its messages, styles, images are generated by copying the models of those from the Apty configuration directory.

4.2 Web operation methods

To make it easy to create questions using a Web browser, we have prepared two edit modes, HTML view mode and HTML code mode. In the HTML
view mode, while teachers are viewing the contents that will be actually displayed in a Web page, they can edit them. For example, in Fig. 4, we change the background color of the text “sea” to blue. We first select this text with the mouse. When we then click a bucket icon from the edit menu in the right column, a color palette appears. As soon as we choose a blue color cell, the background color of the text turns blue. We can see the result immediately because this system uses JavaScript and does not communicate with the server. In the HTML code mode, we can enter more complicated HTML code directly, and we can easily make sure of the result by switching from the HTML code mode to the HTML view mode.

To make it easy to create filling-in questions, we have prepared a filling-in icon as an edit menu item. In addition to the fields of a problem statement and choices, we have prepared such fields as chapter, section, and advice so that teachers can indicate the chapters and sections of the textbooks they want students to review, and teachers can give some appropriate advice when students answer questions wrongly.

4.3 Customization of Apty homepages and Apty system itself

Customizing the Apty homepage and subject homepages is very important for users. The Apty system makes it possible for users to customize several items as shown in Fig. 5. First, (1) users can set a language in which the Apty homepage or subject homepages are shown. To do this, we have prepared message property resource files for each locale (See Fig. 3).

(2) Users can select code when they upload and download subject home messages and feedback messages (R3-3). (3) Users can display the Apty home message that is common among all subjects, and a subject home message that pertains to each subject in

Figure 5: Customization of the Apty system
a subject homepage. (4) The system makes it possible for teachers to design styles and images with which a subject homepage is displayed for each subject (See Fig. 3). (5) Users can freely define edit menu icons that are used when they create questions and subject home messages. At default setting, the Apty system provides 14 edit icons that are considered to be commonly used. However, users can add, change, and delete edit icons by modifying the menu file (which depends on the locale). This menu file defines menu item names, icon file names, options, HTML code to be inserted, and so on.

5 Evaluation

We have been making use of the Apty system since 2002 in classes at university to check the effects of the classes and to promote students’ motivations. We here briefly describe the results of these experiments. We prepared 4-choice questions, which were classified into 3 problem groups such as fundamental, intermediate, and advanced. The numbers of the questions were 70, 15, 10, respectively, and 95 in total. We administered a series of 5 tests (jip1 to jip5). For each test, we set 5 questions, and let the answer time 20 minutes. For example, for the first test (jip1), 5 questions were given at random among 70 questions of the fundamental problem group. As the class was proceeding further, some of the questions in the intermediate and advanced problem groups were given in the fourth test (jip4) and the fifth test (jip5).

For practice, 5 questions were given at random among 60 questions of the fundamental problem group. The answer time was set to 25 minutes, which was a little longer than that of the tests. Anyone was able to begin to answer the questions for practice without login. We administered these 5 tests from the beginning of June to the beginning of July. A little while after the class started, some students gradually appeared who tried to begin practicing. Immediately before the first test was given, a lot of students did practicing again and again. Although we had 98 students in the class, they tried to practice 3790 times in total (See Fig. 6). We can see that the average scores of practices were gradually being raised.

The Apty system enabled students to view the top 10 scores and the distribution of scores for the current test and the previous test in a subject homepage at any time as shown in Fig. 7 (a) (R2-1). It was possible that some students could join in the top 10 of the current test even though they did not join in the top 10 of the previous test, because the top 10 scores were shown based on not the total scores but the scores of each small test (R2-2). In the case of practicing, the top 10 scores are also displayed in real time in the bottom frame of the subject homepage. Because anyone can join in practicing without login, students’ names are not shown in the top 10 scores for practice. On the other hand, the time a student completed practicing is recorded up to hours, minutes, and seconds. Therefore, if someone joins in the top 10 scores, they can know that it is actually their own score. Or they might come to notice that it is the score of the student who had been practicing using a computer next to their computers. From the top 10 scores of practices shown in Fig. 7 (b), it seems that practicing was done during not only the class time but also other times. When we check the top 10 scores and the dates very carefully, we can know that there were some students who came to university to do practicing even on holidays.

Figure 8 shows the histogram of review completion, which indicates what percent of students com-
completed reviewing the questions they had answered wrongly in the tests. Students can review those ques-
tions later at any number of times. If there are some
questions they have not yet reviewed, they can easily
check how many those questions are left. From Fig.
8, we can know that 71 out of 102 students completed
reviewing at 91 to 100 %. It seems that almost all
students did their best to review the results of these 5
tests.

6 Conclusion

This paper has presented the Apty system with which
teachers can easily create questions through a Web
browser, and can automatically administer exams and
dractices. Although e-Learning is not almighty, we
were able to make sure that students’ ability of under-
standing and motivation of learning were promoted in
the classes at university where the Apty system was
utilized. As for the professors, the Apty system turned
out very useful and helpful, because students studied
hard voluntarily through the free practices and profes-
sors were able to save some time that would be re-
quired to administer the tests. In the future, we are
going to enhance such functions as promoting com-
munications between students and their cooperation
in learning.

References:

[1] R. A. Martinez, M. M. Bosch, M. H. P. Herrero,
and A. S. Núñ. Psychopedagogical components
and processes in e-learning, lessons from an
unsuccessful on-line course. *Computers in Human

humans form media and media form humans: An
experimental study examining the effects differ-
ent digital media have on the learning outcomes of
students who have different learning styles. *Inter-
acting with Computers*, Vol. 18, No. 5, pp. 891–
909, 9 2006.

perceptions and relationships among dominants of
e-learning acceptance. *Computers in Human

[5] Mun Y. Yi and Yujong Hwang. Predicting the use
of web-based information systems: self-efficacy,
enjoyment, learning goal orientation, and the
technology acceptance model. *International Jour-
nal of Human-Computer Studies*, Vol. 59, No. 4,

[6] Kalle Romanov and Anne Nevgi. Learning out-
comes in medical informatics: Comparison of a
webct course with ordinary web site learning ma-
terial. *International Journal of Medical Informat-

ing style, learning patterns, and learning perfor-
ance in a webct-based mis course. *Information
2003.

standing e-learning continuance intention: An ex-
tension of the technology acceptance model. *In-
ternational Journal of Human-Computer Studies*,
Vol. 64, No. 8, pp. 683–696, 8 2006.