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Abstract: - This paper presents a software that creates a fractal screensaver. The application generates both 
fractal images and music based on the Julia and Mandelbrot fractals. The four coloring algorithms implemented 
are founded on: escape-time, distance estimators, escape angle and curvature estimation algorithm. The music is 
created for different instruments on 32 voices. The horizontal scan is an 1/32 notes at a tempo of quarter 
note with the value 60. The iteration data from the Julia calculations is mapped to key velocity. The 
higher the iteration result, the louder the pitch presence. The application is configurable and permits 
the user to select the color palette, a region in the fractal and even the instruments to be played. 
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1   Introduction 
In general, a fractal is referred to as "a rough or 
fragmented geometric shape that can be subdivided 
in parts, each of which is (at least approximately) a 
reduced-size copy of the whole". The term was 
created by Benoît Mandelbrot in 1975 and is 
derived from the Latin fractus meaning "broken" or 
"fractured" [1,2,3].  

A fractal as a geometric object generally has 
the following features:  

 
• It is simple and recursive in its definition.  
• It has a fine structure at arbitrarily small 

scales. 
• It is self-similar (at least approximately or 

stochastically).   
• It is too irregular to be easily described in 

traditional Euclidean geometric language.  
• It has a Hausdorff dimension that is greater 

than its topological dimension.  
 

Fractals can be considered to be infinitely 
complex because of the similitude at all their 
levels. Not all self similar objects are fractals, 
because they don’t meet all fractals characteristics. 
Some objects that approximate fractals are: 
lightings, clouds, mountains. 

 
2   Fundamentals 
2.1   Fractal Types 
Coloring algorithms do not cover some types 
of fractals because they are not common and 
are not used in most of the fractal software 
packages.  

Basically, the fractal types can be 
classsified in six main groups, but the software 
is based on the following fractals: Julia and 
Mandelbrot [1,4]. 

These are the most widely used and known 
fractals and are generated by the iteration of 
complex polynomials. Due to their fame, they 
were experimented with different coloring 
algorithms by the fractal artists.  

Many fractals sets can be considered 
subgroups from these types, for example 
fractal terrains are a three dimensional 
representation of a plasma fractal.  

 
 

2.2   Fractal Mathematics 
2.2.1   The Julia Sets 
The Julia set is composed of all starting points z 
which have unusual orbits, that is, those points 
whose long-time behavior under repeated iterations 
can change drastically under arbitrarily small 
perturbations.  
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Definition Orbit of z: Let f be a function. Then the 
list of successive iterations of a point or number is 
called the orbit of that point. 

For example consider f= 2z : If starting with 
z=1, then the orbit is (1, 1, 1,...), so the orbit 
converges to the number 1, so 1 is an attracting 
point. Starting with z=0.5, then the orbit is 
(0.5, 0.25, 0.0625, 0.0039, ...), which 
converges to 0, so 0 is an attracting point, too. 
Stating with z=2, the orbit is (2, 4, 16, 256, 
65536, ...), which converges (diverges) to 
infinity, so infinity is an attracting point, too. 
In this case it can be seen that the orbits of all 
initialization values lead to different attracting 
point [8]. 

The explanations are limited mainly to 
quadratic systems, i.e. systems where f(z) is a 
polynomial of the second degree:  
 
( ) czbzazf +∗+∗= 2                                      (1) 

 
Some things will be defined as: 

 
Definition Critical Point of function f: Let f be a 
function. Then every point z with f'(z)=0 (first 
derivation of f at point z is null) is called Critical 
point of f.  
 
Definition fixed point of f: Let f be any function. 
Then every point z with z=f(z) (f lets z invariable) is 
called fixed point. Additionally, if infinity is 
invariable, i.e. ( ) ∞=∞f , then infinity is a fixed 
point, too.  

The function ( ) czbzazf +∗+∗= 2  can be 
simplified by applying a transformation which 
gives special values to some points. Two forms are 
widely used:  
 
( ) czzzf +∗=                                               (2) 

 
and  
 
( ) ( ) zzmzmzf ∗∗−+∗= 1                              (3)  

 
In the first case the critical point of f is at 0, and 

in some situations this can be very useful for 
theoretical and practical purposes. The fixed points 
of f are: c−+ 25.05.0 and c−− 25.05.0 .  

In the second case the fixed points of f are at 0 
and 1.  

Most of the time fractal programs use standard 
formula (2).  

The attracting fixed points of a Julia set 
determine its property. 

Consider  p is a fixed point of f, i.e. f(p)=p  
Zooming in at p very deep and taking z0 close to p, 
yields z1=f(z0), similarly with:  
 
z1-p=m*(z0-p),                                                      (4) 
 
with m=f'(p)  
 

Writing it in another way will result:  
 

( ) ( ) ( )
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the first derivation of f at point p.  

Choosing z0 close to p, then m=f'(p) is 
approximated:  
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The so called eigen value m of a fixed point p 

of f is m=f'(p). As seen earlier, if |m| is less than 1, 
then z1 is closer to p than z0. Thus an attracting 
fixed point is obtained. If |m| is greater than 1, then 
z1 is more far away than z0, so a repulsing fixed 
point is computed. If |m|=1, then the fixed point is 
neutral or indifferent. Then numerous interesting 
effects can occur (at least theoretically interesting) 
[6].  
 
2.2.2 The  Mandelbrot Set  
Consider J(f)  any Julia set using function f. 

If a complex number c is taken and the Julia set 
J(f) is calculated using that number, i.e. J(z2+c), 
then what it must become known if the Julia set 
J(z2+c) is connected or like “dust” [7]. 

 

( ) ( )
( )⎩

⎨
⎧

+
+

=
likedustisczJif1

connectedisczJif0
cG 2

2

    (7) 

  
The type of the Julia set is shown by every 

point of the Mandelbrot set. 
An arbitrary point c can be taken and lied 

“inside” the Mandelbrot set (i.e. normally the black 
region), therefore the Julia set J(z2+c) is connected. 

Taking another point d from “outside” the 
Mandelbrot set, therefore the Julia set J(z2+d)  is 
dust like. 
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It is not necessary to calculate the whole Julia 
set, however the orbits of specific points must be 
examined. 

The specific points mentioned above are the 
critical points, i.e. all points where the first 
derivation vanishes (f'(z)=0).  The type of the Julia 
set is defined  by the orbits of the critical points [8]. 

When all orbits remain limited, the Julia set is 
connected. (If at least one orbit tends to converge to 
infinity, then the Julia set is dust like). 

Consider the following example: 
In the case of examining z2+c there is only one 
critical point: f'(z)=2*z=0, i.e. z=0 is the only 
critical point. Thus in this case only the orbit of 0 
must be examined. 

The most interesting Julia sets related to the 
Mandelbrot set are those that lie near its border. 

In order to calculate an interesting Julia set the 
parameter c must be set to a value lying near the 
border of the Mandelbrot set [9]. 

The Mandelbrot set appears as a fringed 
horizontal eight that is symmetrical on the real axis, 
as in the following figure: 

  

 
Fig. 1 A Mandelbrot set  

 

 
Fig. 2 A Julia set 

Note: The difference between Mandelbrot and 
Julia sets consists of the fact that the complex 
coordinates of the point are substituted to c and not 
to z (established at first with a 0 value). The 
complex number c should not be a constant defined 
when starting the elaboration. An example of a 
Julia set obtained from the application is shown in 
Fig. 2. 

 
 
2.3 The software 
The software was developed in order to follow two 
major lines: visual and acoustic, merged into a 
single final product - a screen saver. 

The application is based upon the previous 
described sets, making a visual link between them, 
generating the Julia set by using a constant selected 
from the Mandelbrot set. It can be observed that if 
the constant is outside the Mandelbrot set, the Julia 
set is represented as a fractal image with little 
complexity. Also, if the constant is inside the 
Mandelbrot set, the image is not interesting. 
Infinite complexity can be achieved by choosing 
constants merely on the “coast line” of the 
Mandelbrot set [10]. 

The music can be generated upon the fractal 
image created and is strongly depending on the 
image. For example, a zoom could be made in or 
out on the same spot in the complex plane and the 
result is that the music changes accordingly [11]. 
 
 
3    Fractal Generation Algorithms 
The new fractal techniques tend to lean from fractal 
formulas towards algorithms. The mathematical 
equations are substituted by coloring algorithms, 
and, more interesting, music generation algorithms 
[12]. 
 
 
3.1 Fractals and Dynamical Systems 
Dynamical systems are a well-known branch of 
mathematics, but until the arrival of computers the 
sheer number of calculations involved made them 
impractical for real use. Benoit Mandelbrot was the 
first one to use computer’s ability to perform rapid 
calculations to produce graphical representations of 
dynamical systems in the complex plane. This 
representation was based on the quadratic formulas 
described by the French mathematician Gaston 
Julia at the beginning of the 20th century.  

The 1980s was the period when fractals started 
to be explored not only for their mathematical 
significance, but also for their artistic nature. The 

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007      161



 

mathematical apparatus is still the base, but the 
purpose changed to art representation. Fractal 
artists tested hundreds of different fractal equations 
which lead to the discovery of many new different 
fractal types. The choosing of the parameters was 
very important to refine the fractal form, aspect and 
even sound. 

After 1995, few new major fractal types have 
been introduced. This is because the newest 
innovations in fractal art do not come from 
changing the fractal equation, but from new ways 
of coloring the results of those equations. The 
increasing complexity of the coloring algorithms 
made it possible to use simpler equations. This 
flexibility made more space for personal artistic 
expression in the crisp fractal world. 

 
 

3.2   Coloring Algorithms 
Every dynamical system produces a sequence of 
values z0, z1, z2… zn (the orbit of z – start point). 
Fractal images are created by producing one of 
these sequences for each pixel in the image and the 
coloring algorithm is what interprets this sequence 
to produce a final color. An example is presented in 
Fig. 3. 

 
Fig. 3 Example of an orbit 

Typically, the coloring algorithm produces a 
single value for each pixel. Since color is a three-
dimensional space, this one-dimensional value 
must be expanded to produce a color image. A 
spread method is to create a linear color palette as a 
sequence of 3D color values. The value computed 
by the coloring algorithm is used as a gradient 
along this line. 

If the last palette color is connected to the first, 
a closed, segmented loop is formed and any real 
value from the coloring algorithm can be mapped 
to a defined color in the gradient. 

Generally, gradients are linearly interpolated in 
RGB space, but they can be interpolated in other 
spaces like HSL and interpolated with spline curves 
instead of straight line segments. 

The gradient selection is essential in creating a 
fractal image. This value determines which parts of 
the image are stressed out. In extreme cases, two 
images with the same fractal parameters, but 
different color schemes may be totally different. 
 
3.2.1 The Escape-Time Algorithm  
The escape-time algorithm is one of the earliest 
coloring algorithms, and in many programs it is 
still the only option available. Due to its simplicity, 
it is recommended for those that are rookies in 
fractal software. Unfortunately it is not very 
interesting from the artistic point of view because it 
produces discrete values.  

The algorithm is based on the number of 
iterations used to compute if the orbit sequence 
converges to infinity or not. It can be demonstrated 
that when the orbit of any value of z0, z1, z2… zn 
exceeds a border region R, it always diverges 
towards infinity. For each fractal type a different 
shape R, with a minimum size is defined. If the 
orbit is stopped when zn is outside of R, the escape-
time algorithm uses as coloring value the length n. 
In software implementations it is necessary to set a 
limit to the number of iterations to prevent infinite 
loops.  

Generally, R is set as a circle, centered in the 
origin, with radius 2. The reason is that for the 
Mandelbrot set, it can be proven that as soon as 

2>z , the orbit will diverge too. Different types 
of image were created by using other shapes and 
positions for R: stars, triangles, ellipses and others.  

Although these shapes must, mathematically 
speaking, include the circle of radius 2 in order to 
correctly compute the divergence, some tests were 
made on other shapes (smaller radius). 

Other complex coloring algorithms are 
implemented but this article is focused on how a 
simple formula and simple algorithms can generate 
interesting images and music. 
 
 
3.3 Fractal Music 
The data can be mapped into a single tonality 
which could help illustrating the pitch data in 
relation to itself, but no tonal motion is allowed in 
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312x256 

the music. This does not represent a musically 
creative decision, but mono-tonality allows a 
clearer illustration of the set data.  
 
3.3.1 Music Algorithm 
For each “image” with the borders: 312 pixels wide 
by 256 pixels vertical, the distance between each 
pixel is computed according to the Julia world 
window. By scanning 8 times from left to the right 
the “image” to cover the 256 pixel vertical height 
the 32 voices are formed. The pitch remains the 
same for each voice throughout, voice 1 the highest 
pitch and voice 32 the lowest pitch. The horizontal 
scan is an 1/32 notes at a tempo of quarter note 
with the value 60. The iteration data from the Julia 
calculations is mapped to key velocity. The higher 
the iteration result, the louder the pitch presence.  
 

Fig. 4 Fractal image generation sample 
 

The velocity data is stratified to 26 values 
(dwell bands), the lowest being suppressed (i.e. 
silent background). 

Though the Julia set can be mapped to sound in 
many ways, the purpose here is two-fold:  

1. Demonstrating the feasibility of sonifying 
(as opposed to visualizing) scientific data, 
and 

2. Demonstrating the possibility of finding 
musical structures in the Julia set. 

 
When composing music, creative manipulation 

must be involved. The "composition" part was kept 
to a minimum in the algorithm; it might lessen the 
musical qualities but having as a purpose to 
preserve the objectivity toward the scientific data. 

 For any dwell band, the initial “attack” is the 
only one sounded in any singular voice and the 
reiteration of attacks on a repeated note in a given 
voice is suppressed. A note is sounded when for a 
given voice there is a change of value. Therefore, 
the ongoing background noise is cleaned up in 
order to clearly hear the leading edge of the shape. 
 
 
4   Implementation 
Every fractal rendering software requires massive 
computational efforts and any optimization of the 
code is more than welcomed. 

First, one could observe that the bail out 
condition could be optimized for speed. 2>z  is 

equivalent with 42 >z , but the latter is much 
faster because we don’t compute the square root. 
 

complex P, Z; 
for each point P on the complex plane { 
   Z = 0; 
   for i = 0 to ITER { 
      if abs(Z)^2 > 4.0 
         set point color to palette[i]; 
         break the inner loop and go to the next 
point; 
      Z = Z * Z + P; 
   } 
   set point color to black; 
} 

 
Another optimization is the implementation of 

SSE (Streaming SIMD Extensions) Julia 
computation routines on Intel Pentium 4 
Processors. These instructions perform 4 pixel 
color computation at the same time using a more 
precise format. 

The code is written in C++ and uses Win32 
API which is optimized also for speed of execution. 
The application plays all music data on a MIDI 
device, using a selected instrument from a list of 
127 possible MIDI instruments. 

One major problem of the application was the 
music as it was hard to play all data from the fractal 
image because of the self-similarity property was 
reflected in the music too. This issue was solved by 
playing only the edges of the fractal and the rest of 
the music data skipped. 

One can also play a fractal music sample that is 
the music played during the screen saver period but 
is 8 times compressed in time and space. 
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All these information are saved into the system 

registry and used when displaying and animating 
the fractal. The animation is performed by cycling 
the colors from the palette and simply updating the 
display. 

 
 

5   Conclusions 
This paper presented a software that creates a 
fractal screensaver. The application generates both 
fractal images and music based on the Julia and 
Mandelbrot fractals. The four coloring algorithms 
implemented are founded on: escape-time, distance 
estimators, escape angle and curvature estimation 
algorithm.  

In this article it was emphasized only the 
escape-time coloring algorithm and the music 
generation. The music is created for different 
instruments on 32 voices. The horizontal scan is an 
1/32 notes at a tempo of quarter note with the value 
60. The iteration data from the Julia calculations is 
mapped to key velocity. The higher the iteration 
result, the louder the pitch presence.  

The application creates a linear color palette as 
a sequence of 3D color values. The value computed 
by the coloring algorithm is used as a gradient 
along this line. 

The application is configurable and permits the 
user to select the color palette, a region in the 
fractal and even the instruments to be played. 

 

 
The result is a screen saver application that 

manages to combine beautiful fractal images and 
strange fractal music. 
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Fig. 5 Fractal Art Screen Saver Setup 
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