

Fractal Art: Fractal Image and Music Generator

RAZVAN TANASIE1 IEEE Member, MIHAI POPESCU2, DANA BOGHEANU2, GABRIELA
CIOCOIU2, DORIAN COJOCARU3 IEEE Member

Software Engineering Department1,2, Mechatronics Department3

Faculty of Automation, Computers and Electronics, University of Craiova
Bvd. Decebal, Nr. 107

ROMANIA
tanasie_razvan@software.ucv.ro1

Abstract: - This paper presents a software that creates a fractal screensaver. The application generates both
fractal images and music based on the Julia and Mandelbrot fractals. The four coloring algorithms implemented
are founded on: escape-time, distance estimators, escape angle and curvature estimation algorithm. The music is
created for different instruments on 32 voices. The horizontal scan is an 1/32 notes at a tempo of quarter
note with the value 60. The iteration data from the Julia calculations is mapped to key velocity. The
higher the iteration result, the louder the pitch presence. The application is configurable and permits
the user to select the color palette, a region in the fractal and even the instruments to be played.

Key-Words: - fractals, Julia, Mandelbrot, fractal music, fractal images, fractal screensaver

1 Introduction
In general, a fractal is referred to as "a rough or
fragmented geometric shape that can be subdivided
in parts, each of which is (at least approximately) a
reduced-size copy of the whole". The term was
created by Benoît Mandelbrot in 1975 and is
derived from the Latin fractus meaning "broken" or
"fractured" [1,2,3].

A fractal as a geometric object generally has
the following features:

• It is simple and recursive in its definition.
• It has a fine structure at arbitrarily small

scales.
• It is self-similar (at least approximately or

stochastically).
• It is too irregular to be easily described in

traditional Euclidean geometric language.
• It has a Hausdorff dimension that is greater

than its topological dimension.

Fractals can be considered to be infinitely
complex because of the similitude at all their
levels. Not all self similar objects are fractals,
because they don’t meet all fractals characteristics.
Some objects that approximate fractals are:
lightings, clouds, mountains.

2 Fundamentals
2.1 Fractal Types
Coloring algorithms do not cover some types
of fractals because they are not common and
are not used in most of the fractal software
packages.

Basically, the fractal types can be
classsified in six main groups, but the software
is based on the following fractals: Julia and
Mandelbrot [1,4].

These are the most widely used and known
fractals and are generated by the iteration of
complex polynomials. Due to their fame, they
were experimented with different coloring
algorithms by the fractal artists.

Many fractals sets can be considered
subgroups from these types, for example
fractal terrains are a three dimensional
representation of a plasma fractal.

2.2 Fractal Mathematics
2.2.1 The Julia Sets
The Julia set is composed of all starting points z
which have unusual orbits, that is, those points
whose long-time behavior under repeated iterations
can change drastically under arbitrarily small
perturbations.

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 159

Definition Orbit of z: Let f be a function. Then the
list of successive iterations of a point or number is
called the orbit of that point.

For example consider f= 2z : If starting with
z=1, then the orbit is (1, 1, 1,...), so the orbit
converges to the number 1, so 1 is an attracting
point. Starting with z=0.5, then the orbit is
(0.5, 0.25, 0.0625, 0.0039, ...), which
converges to 0, so 0 is an attracting point, too.
Stating with z=2, the orbit is (2, 4, 16, 256,
65536, ...), which converges (diverges) to
infinity, so infinity is an attracting point, too.
In this case it can be seen that the orbits of all
initialization values lead to different attracting
point [8].

The explanations are limited mainly to
quadratic systems, i.e. systems where f(z) is a
polynomial of the second degree:

() czbzazf +∗+∗= 2 (1)

Some things will be defined as:

Definition Critical Point of function f: Let f be a
function. Then every point z with f'(z)=0 (first
derivation of f at point z is null) is called Critical
point of f.

Definition fixed point of f: Let f be any function.
Then every point z with z=f(z) (f lets z invariable) is
called fixed point. Additionally, if infinity is
invariable, i.e. () ∞=∞f , then infinity is a fixed
point, too.

The function () czbzazf +∗+∗= 2 can be
simplified by applying a transformation which
gives special values to some points. Two forms are
widely used:

() czzzf +∗= (2)

and

() () zzmzmzf ∗∗−+∗= 1 (3)

In the first case the critical point of f is at 0, and

in some situations this can be very useful for
theoretical and practical purposes. The fixed points
of f are: c−+ 25.05.0 and c−− 25.05.0 .

In the second case the fixed points of f are at 0
and 1.

Most of the time fractal programs use standard
formula (2).

The attracting fixed points of a Julia set
determine its property.

Consider p is a fixed point of f, i.e. f(p)=p
Zooming in at p very deep and taking z0 close to p,
yields z1=f(z0), similarly with:

z1-p=m*(z0-p), (4)

with m=f'(p)

Writing it in another way will result:

() () ()
pz

pfzflimpf
pz

'

−
−

=
→

, (5)

the first derivation of f at point p.

Choosing z0 close to p, then m=f'(p) is
approximated:

() () () ()
pz

pfzf
pz

pfzf
m

1

1

0

0

−
−

=
−
−

= (6)

The so called eigen value m of a fixed point p

of f is m=f'(p). As seen earlier, if |m| is less than 1,
then z1 is closer to p than z0. Thus an attracting
fixed point is obtained. If |m| is greater than 1, then
z1 is more far away than z0, so a repulsing fixed
point is computed. If |m|=1, then the fixed point is
neutral or indifferent. Then numerous interesting
effects can occur (at least theoretically interesting)
[6].

2.2.2 The Mandelbrot Set
Consider J(f) any Julia set using function f.

If a complex number c is taken and the Julia set
J(f) is calculated using that number, i.e. J(z2+c),
then what it must become known if the Julia set
J(z2+c) is connected or like “dust” [7].

() ()
()⎩

⎨
⎧

+
+

=
likedustisczJif1

connectedisczJif0
cG 2

2

 (7)

The type of the Julia set is shown by every

point of the Mandelbrot set.
An arbitrary point c can be taken and lied

“inside” the Mandelbrot set (i.e. normally the black
region), therefore the Julia set J(z2+c) is connected.

Taking another point d from “outside” the
Mandelbrot set, therefore the Julia set J(z2+d) is
dust like.

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 160

It is not necessary to calculate the whole Julia
set, however the orbits of specific points must be
examined.

The specific points mentioned above are the
critical points, i.e. all points where the first
derivation vanishes (f'(z)=0). The type of the Julia
set is defined by the orbits of the critical points [8].

When all orbits remain limited, the Julia set is
connected. (If at least one orbit tends to converge to
infinity, then the Julia set is dust like).

Consider the following example:
In the case of examining z2+c there is only one
critical point: f'(z)=2*z=0, i.e. z=0 is the only
critical point. Thus in this case only the orbit of 0
must be examined.

The most interesting Julia sets related to the
Mandelbrot set are those that lie near its border.

In order to calculate an interesting Julia set the
parameter c must be set to a value lying near the
border of the Mandelbrot set [9].

The Mandelbrot set appears as a fringed
horizontal eight that is symmetrical on the real axis,
as in the following figure:

Fig. 1 A Mandelbrot set

Fig. 2 A Julia set

Note: The difference between Mandelbrot and
Julia sets consists of the fact that the complex
coordinates of the point are substituted to c and not
to z (established at first with a 0 value). The
complex number c should not be a constant defined
when starting the elaboration. An example of a
Julia set obtained from the application is shown in
Fig. 2.

2.3 The software
The software was developed in order to follow two
major lines: visual and acoustic, merged into a
single final product - a screen saver.

The application is based upon the previous
described sets, making a visual link between them,
generating the Julia set by using a constant selected
from the Mandelbrot set. It can be observed that if
the constant is outside the Mandelbrot set, the Julia
set is represented as a fractal image with little
complexity. Also, if the constant is inside the
Mandelbrot set, the image is not interesting.
Infinite complexity can be achieved by choosing
constants merely on the “coast line” of the
Mandelbrot set [10].

The music can be generated upon the fractal
image created and is strongly depending on the
image. For example, a zoom could be made in or
out on the same spot in the complex plane and the
result is that the music changes accordingly [11].

3 Fractal Generation Algorithms
The new fractal techniques tend to lean from fractal
formulas towards algorithms. The mathematical
equations are substituted by coloring algorithms,
and, more interesting, music generation algorithms
[12].

3.1 Fractals and Dynamical Systems
Dynamical systems are a well-known branch of
mathematics, but until the arrival of computers the
sheer number of calculations involved made them
impractical for real use. Benoit Mandelbrot was the
first one to use computer’s ability to perform rapid
calculations to produce graphical representations of
dynamical systems in the complex plane. This
representation was based on the quadratic formulas
described by the French mathematician Gaston
Julia at the beginning of the 20th century.

The 1980s was the period when fractals started
to be explored not only for their mathematical
significance, but also for their artistic nature. The

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 161

mathematical apparatus is still the base, but the
purpose changed to art representation. Fractal
artists tested hundreds of different fractal equations
which lead to the discovery of many new different
fractal types. The choosing of the parameters was
very important to refine the fractal form, aspect and
even sound.

After 1995, few new major fractal types have
been introduced. This is because the newest
innovations in fractal art do not come from
changing the fractal equation, but from new ways
of coloring the results of those equations. The
increasing complexity of the coloring algorithms
made it possible to use simpler equations. This
flexibility made more space for personal artistic
expression in the crisp fractal world.

3.2 Coloring Algorithms
Every dynamical system produces a sequence of
values z0, z1, z2… zn (the orbit of z – start point).
Fractal images are created by producing one of
these sequences for each pixel in the image and the
coloring algorithm is what interprets this sequence
to produce a final color. An example is presented in
Fig. 3.

Fig. 3 Example of an orbit

Typically, the coloring algorithm produces a
single value for each pixel. Since color is a three-
dimensional space, this one-dimensional value
must be expanded to produce a color image. A
spread method is to create a linear color palette as a
sequence of 3D color values. The value computed
by the coloring algorithm is used as a gradient
along this line.

If the last palette color is connected to the first,
a closed, segmented loop is formed and any real
value from the coloring algorithm can be mapped
to a defined color in the gradient.

Generally, gradients are linearly interpolated in
RGB space, but they can be interpolated in other
spaces like HSL and interpolated with spline curves
instead of straight line segments.

The gradient selection is essential in creating a
fractal image. This value determines which parts of
the image are stressed out. In extreme cases, two
images with the same fractal parameters, but
different color schemes may be totally different.

3.2.1 The Escape-Time Algorithm
The escape-time algorithm is one of the earliest
coloring algorithms, and in many programs it is
still the only option available. Due to its simplicity,
it is recommended for those that are rookies in
fractal software. Unfortunately it is not very
interesting from the artistic point of view because it
produces discrete values.

The algorithm is based on the number of
iterations used to compute if the orbit sequence
converges to infinity or not. It can be demonstrated
that when the orbit of any value of z0, z1, z2… zn
exceeds a border region R, it always diverges
towards infinity. For each fractal type a different
shape R, with a minimum size is defined. If the
orbit is stopped when zn is outside of R, the escape-
time algorithm uses as coloring value the length n.
In software implementations it is necessary to set a
limit to the number of iterations to prevent infinite
loops.

Generally, R is set as a circle, centered in the
origin, with radius 2. The reason is that for the
Mandelbrot set, it can be proven that as soon as

2>z , the orbit will diverge too. Different types
of image were created by using other shapes and
positions for R: stars, triangles, ellipses and others.

Although these shapes must, mathematically
speaking, include the circle of radius 2 in order to
correctly compute the divergence, some tests were
made on other shapes (smaller radius).

Other complex coloring algorithms are
implemented but this article is focused on how a
simple formula and simple algorithms can generate
interesting images and music.

3.3 Fractal Music
The data can be mapped into a single tonality
which could help illustrating the pitch data in
relation to itself, but no tonal motion is allowed in

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 162

312x256

the music. This does not represent a musically
creative decision, but mono-tonality allows a
clearer illustration of the set data.

3.3.1 Music Algorithm
For each “image” with the borders: 312 pixels wide
by 256 pixels vertical, the distance between each
pixel is computed according to the Julia world
window. By scanning 8 times from left to the right
the “image” to cover the 256 pixel vertical height
the 32 voices are formed. The pitch remains the
same for each voice throughout, voice 1 the highest
pitch and voice 32 the lowest pitch. The horizontal
scan is an 1/32 notes at a tempo of quarter note
with the value 60. The iteration data from the Julia
calculations is mapped to key velocity. The higher
the iteration result, the louder the pitch presence.

Fig. 4 Fractal image generation sample

The velocity data is stratified to 26 values
(dwell bands), the lowest being suppressed (i.e.
silent background).

Though the Julia set can be mapped to sound in
many ways, the purpose here is two-fold:

1. Demonstrating the feasibility of sonifying
(as opposed to visualizing) scientific data,
and

2. Demonstrating the possibility of finding
musical structures in the Julia set.

When composing music, creative manipulation

must be involved. The "composition" part was kept
to a minimum in the algorithm; it might lessen the
musical qualities but having as a purpose to
preserve the objectivity toward the scientific data.

 For any dwell band, the initial “attack” is the
only one sounded in any singular voice and the
reiteration of attacks on a repeated note in a given
voice is suppressed. A note is sounded when for a
given voice there is a change of value. Therefore,
the ongoing background noise is cleaned up in
order to clearly hear the leading edge of the shape.

4 Implementation
Every fractal rendering software requires massive
computational efforts and any optimization of the
code is more than welcomed.

First, one could observe that the bail out
condition could be optimized for speed. 2>z is

equivalent with 42 >z , but the latter is much
faster because we don’t compute the square root.

complex P, Z;
for each point P on the complex plane {
 Z = 0;
 for i = 0 to ITER {
 if abs(Z)^2 > 4.0
 set point color to palette[i];
 break the inner loop and go to the next
point;
 Z = Z * Z + P;
 }
 set point color to black;
}

Another optimization is the implementation of

SSE (Streaming SIMD Extensions) Julia
computation routines on Intel Pentium 4
Processors. These instructions perform 4 pixel
color computation at the same time using a more
precise format.

The code is written in C++ and uses Win32
API which is optimized also for speed of execution.
The application plays all music data on a MIDI
device, using a selected instrument from a list of
127 possible MIDI instruments.

One major problem of the application was the
music as it was hard to play all data from the fractal
image because of the self-similarity property was
reflected in the music too. This issue was solved by
playing only the edges of the fractal and the rest of
the music data skipped.

One can also play a fractal music sample that is
the music played during the screen saver period but
is 8 times compressed in time and space.

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 163

All these information are saved into the system

registry and used when displaying and animating
the fractal. The animation is performed by cycling
the colors from the palette and simply updating the
display.

5 Conclusions
This paper presented a software that creates a
fractal screensaver. The application generates both
fractal images and music based on the Julia and
Mandelbrot fractals. The four coloring algorithms
implemented are founded on: escape-time, distance
estimators, escape angle and curvature estimation
algorithm.

In this article it was emphasized only the
escape-time coloring algorithm and the music
generation. The music is created for different
instruments on 32 voices. The horizontal scan is an
1/32 notes at a tempo of quarter note with the value
60. The iteration data from the Julia calculations is
mapped to key velocity. The higher the iteration
result, the louder the pitch presence.

The application creates a linear color palette as
a sequence of 3D color values. The value computed
by the coloring algorithm is used as a gradient
along this line.

The application is configurable and permits the
user to select the color palette, a region in the
fractal and even the instruments to be played.

The result is a screen saver application that

manages to combine beautiful fractal images and
strange fractal music.

References:
[1] Benoit B. Mandelbrot, Fractals and Chaos: The
Mandelbrot Set and Beyond, Springer, 2004
[2] Benoit B. Mandelbrot, The Fractal Geometry of
Nature, W. H. Freeman, 1982
[3] Benoit Mandelbrot, Gaussian Self-Affinity and
Fractals, Springer, 2001
[4] Benoit B. Mandelbrot, Michael Frame, Fractals,
Graphics, and Mathematics Education, The
Mathematical Association of America, 2002
[5] Charles Madden, Fractals in Music: Introductory
Mathematics for Musical Analysis, High Art Press, 1999
[6] Heinz-Otto Peitgen, Hartmut Jürgens, Dietmar
Saupe, Chaos and Fractals, Springer, 2004
[7] Kenneth Falconer, Fractal Geometry: Mathematical
Foundations and Applications, Wiley, 2003
[8] Masahiro Nakagawa, Chaos and Fractals in
Engineering, World Scientific Publishing Company,
1999
[9] Nigel Lesmoir-Gordon, Introducing Fractal
Geometry, Totem Books, 2006
[10] Nigel Lesmoir-Gordon, The Colors of Infinity: The
Beauty, The Power and the Sense of Fractals, Clear
Books, 2004
[11] Roger T. Stevens, Creating Fractals, Charles River
Media, 2005
[12] Roger T. Stevens, Fractal Programming in C, M &
T Books, 1989

Fig. 5 Fractal Art Screen Saver Setup

Proceedings of the 7th WSEAS Int. Conf. on Signal Processing, Computational Geometry & Artificial Vision, Athens, Greece, August 24-26, 2007 164

