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Abstract: - This paper presents the design and the analysis of some adaptive nonlinear control strategies for a 
class of depollution fermentation processes that are carried out in a continuous stirred tank bioreactor. The 
controllers design is based on the input-output linearization technique. The resulted control methods are 
applied in depollution control problem in the case of the anaerobic digestion bioprocess for which dynamical 
kinetics are strongly nonlinear and not exactly known, and for which not all the state variables are measurable. 
It must be noted that for the controlling of this very complex bioprocess it is necessary to reduce his model 
order. This is realized by using the singular perturbation method. Numerical simulations are included to 
illustrate the performances of the proposed controllers. 
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1   Introduction 
During the last years, the control of biotechnological 
processes has been an important problem attracting 
wide attention. The main engineering motivation in 
applying control methods to such living processes is 
to improve operational stability and production 
efficiency. But the use of modern control for these 
bioprocesses is still low. Two factors make 
biotechnological processes control particularly 
difficult. First, these processes exhibit large 
nonlinearities, strongly coupled variables and often 
poorly understood dynamics. Second, the real-time 
monitoring and on-line measurements of biological 
process variables, for example, biomass and/or 
product concentrations, which are essential for 
control design, is hampered by the lack of cheap and 
reliable on-line sensors. Due to the two above 
characteristic factors, bioprocesses constitute a 
natural field of application for adaptive techniques 
[1], [6], [7], [8]. So, the difficulties encountered in 
the measurement of the state variables of the 
bioprocesses impose the use of the so-called 
“software sensors” [1]. Note that these software 
sensors are used not only for the estimation of the 
concentrations but also for the estimation of the 
kinetic parameters [1], [6].      

This paper presents the design and the analysis of 
some nonlinear and adaptive control strategies 
capable to deal with the model uncertainties in an 
adaptive way for a complex anaerobic digestion 
bioprocess used as a depollution process. The 
controllers are obtained via the input-output 
linearization technique [3], [10]. The only 
information required about the process are the 
measurements of the state variables and its relative 

degree. It must be noted that if for the analyzed 
process there are no accessible state variables, these 
will be estimated by using an appropriately state 
observer. Numerical simulations performed under 
identical circumstances are included to demonstrate 
the performances of the designed controllers.  

The rest of this paper is organized as follows. 
Section 2 is devoted to description and modelling of 
an anaerobic digestion bioprocess. Some nonlinear 
and adaptive control strategies are proposed in 
Section 3. Simulations results presented in Section 4 
illustrate the performances of the proposed control 
algorithms and, finally, Section 5 concludes the 
paper. 
  
 
2   Process description and modelling 
Anaerobic digestion is a biological wastewater 
treatment process which produces methane. Four 
metabolic paths [1], [2] can be identified in this 
process: two for acidogenesis and two for 
methanisation (see Fig. 1). 

In the first acidogenic path, glucose (or another 
complex substrate) is decomposed into volatile fatty 
acids (acetate, propionate), hydrogen and inorganic 
carbon by acidogenic bacteria. In the second 
acidogenic path, OHPA – Obligate Hydrogen 
Producing Acetogens decomposes propionate into 
acetate, hydrogen and inorganic carbon. In the first 
methanisation path, acetate is transformed into 
methane and inorganic carbon by acetoclastic 
methanogenic bacteria, while in the second 
methanisation path, hydrogen combines inorganic 
carbon to produce methane under the action of 
hydrogenophilic methanogenic bacteria. 
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Fig.1. A schematic view of anaerobic digestion process 
 

The process can be described by the following 
reaction network [1], [2]: 
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where X1, X2, X3, X4 are respectively acidogenic 
bacteria, acetoclastic methanogenic bacteria, OHPA, 
and hydrogenophilic methanogenic bacteria,  S1, S2, 
S3, S4, S5 are respectively glucose, acetate, 
propionate, hydrogen, inorganic carbon, and P is 
methane; r1 and r2 are respectively the rates of the 
first acidogenic reaction and methanisation reaction 
and r3 and r4 are respectively the rates of the second 
acidogenic reaction and methanisation reaction. 
Note that each reaction rate is a growth rate, and 
each growth reaction involves a different 
microorganism population and may be written as a 
product of a specific growth rate by concentration of 
the biomass involved in the reaction [1], [2]: 

iii Xr µ= , 4,1=i      (5) 

where 4,1, =µ ii  are the specific growth rates of 
reactions (1)-(4). 

Let us consider that the anaerobic digestion 
process is operated in a Continuous Stirred Tank 
Reactor, and the only inlet substrate is the organic 
matter S1. The dynamics of the anaerobic digestion 
process are described by the following equations: 

 111 XDrX −=&                         (6) 

inSDSDrkS +−−= 11211
&     (7) 

 222 XDrX −=&             (8) 

23432421412 SDrkrkrkS −+−=&            (9) 

333 XDrX −=&                 (10) 

33631613 SDrkrkS −−=&                  (11) 

444 XDrX −=&                      (12) 

244843831814 HQSDrkrkrkS −−−+=&              (13) 

254943932921915 COQSDrkrkrkrkS −−−++=&      (14) 

PQPDrkrkP −−+= 404202
&               (15) 

where QP, 
2COQ and 

2HQ  represent respectively 
gaseous outflow rates of CH4, 2CO  and H2, Sin is the 
influent substrate concentration, kij  (i = 0, 1, ... , 9;  j 
= 1, 2, 3, 4) are the yield coefficients, and D is the 
dilution rate. 

Since the anaerobic digestion is a very complex 
bioprocess, his dynamical model being described by 
ten differential equations, from an engineering point 
of view to control this bioprocess can be used an 
appropriately reduced order model. One possible 
systematic approach to achieve model simplification 
is to use the singular perturbation method, which is a 
technique that allows to transform a set of n+m 
differential equation into a set n differential 
equations and a set of m algebraic equations [2],[6]. 

To reduce the model order of bioprocesses it can 
be applied the following rule [2]: If in process there 
are some products jξ  with low solubility, then in 
the dynamics corresponding to jξ  given by 

jjjjj QFDrK −+ξ−ξ=ξ )(&               (16) 

where jK  is the line of K corresponding to jξ , the 
simplification is achieved by setting iξ  and iξ&  to 
zero obtaining thus the following algebraic equation: 

jjj FQK −=ξϕ )(                 (17) 

This rule is also applied for substrates involved 
in fast (slow) reactions [2].    

It is known that for this bioprocess, the 
decomposition of propionate by OHPA and the 
composition of hydrogen and inorganic carbon are 
two reactions which may be characterized by fast 
dynamics. Then, using the above rule, the 
differential equations in (11) and (13) derive the 
following algebraic equations: 
 3631610 rkrk −= ;

24843831810 HQrkrkrk −−+=   (18) 

If in (19) we neglect the outflow rate 
2HQ  then 

the reaction rates 1r  and 3r  can be expressed as: 
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Using the above approximations, the anaerobic 
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digestion process can be described by the following 
reduced order dynamical model:    

111 XDrX −=&                 (20) 

inSDSDrkS +−−= 1111
&                  (21) 

222 XDrX −=&                 (22) 

222132 SDrkrkS −−=&                        (23) 

2525145 COQSDrkrkS −−+=&                (24) 

 PQPDrkrkP −−+= 1726
&                (25) 

where: 
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3 Control Strategies 
For the class of anaerobic bioprocesses described by 
dynamical model (16) we consider the problem of 
controlling the output pollution level by using an 
appropriately control input under the following 
assumptions: (i) the control input is the dilution rate; 
(ii) the reaction rates ir  are incompletely unknown; 
(iii) the matrix K is known; (iv) the vectors F and Q 
are known either by measurements or by user's 
choice.  

To design the controllers we will use the 
simplified version of dynamical model given by 
(21)-(26) rewritten as:  

QFDKGQFDKr −+ξ−ξαξ=−+ξ−ξ=ξ )()()(&

                   (26) 
where )()()( ξαξ=ξ Gr , TPSSXSX ][ 52211=ξ  
is the state vector, F = [0  DSin 0  0  0  0]T  is the 
vector of feed rates, Q = [0  0  0  0 

2COQ QP]T is the 

vector of gaseous outflow rates, Trrr ][ 21=  is the 
vector of reaction rates, T][ 21 αα=α  is the vector 
of specific reaction rates, and   

T

kkk
kkkk

K 







−

−
=

652

7431

100
01

, 







=

22

11

0
0
SX

SX
G . 

As controlled variable let us assume the output 
pollution level y defined as: 

2211 ScScy +=                 (27) 

where c1 and c2 are known conversion constants, and 
as input control we chose the dilution rate, u = D. 

From (27) and (26) we obtain the following 
input-output process model whose relative degree is 
equal to 1: 

ucDySXkcSXkckcy 1222221111132 )( +−α−α−=&  
            (28) 

For the anaerobic digestion process, the main 
control objective is to make the output pollution 
level y  to maintain and to track a specified low 
level pollution denoted ℜ∈*y  despite load 
variations and substrate concentration variations.  
 
 
3.1   Exactly feedback linearizing control  
Consider the ideal case where maximum prior 
knowledge concerning the process is available, that 
is in (26) the specific reaction rates 1α  and 2α  are 
assumed completely known, while all the state 
variables and all the inflow and outflow rates are 
available for on-line measurements. Then the 
following control law known as the exactly feedback 
linearizing control law: 

( 1111132
*

1
*

1
)()(1

α−−−λ+
−

= SXkckcyyy
ySc

u
in

&   

      )22222 α+ SXkc                            (29)  

determines a dynamical behaviour of closed-loop 
system described by the following fist order linear 
stable differential equation: 

0)()( *
1

* =−λ+− yyyy
dt
d ,  01 >λ              (30) 

Since the performances of the closed-loop system 
by using the exactly control law (29) are the best, 
this case will be used as benchmark to compare with 
other situations obtained when the process model is 
incompletely known or there are state variables 
which are not measured.  

The control law (29) leads to a linear error model 
ee Λ−=& , where yye −= *  represents the tracking 

error. It is clear that for ,01 >λ  the error model has 
an exponential stable point at 0=e .   

 
 

3.2   Adaptive control strategies 
Since the prior knowledge concerning the process 
assumed in the previous subsection is not realistic, 
in this subsection we analyze some more realistic 
cases, where the process dynamics are incompletely 
known and time varying and some state variables 
are not accessible.  

Let’s assume that the only measurements 
available on-line are the output pollution level y, the 
acetate concentration S2 and methane gas outflow 
rate QP. Assume also that the specific reaction rates 
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1α  and 2α  are completely unknown. Since the 
control law (29) containes the state variables X1, X2, 
S1 and S2 from which only S2 can be on-line 
measured, one concludes that all other unmeasured 
variables must be estimated (even in the situation 
when the specific reaction rates 1α  and 2α  are 
completely unknown). For this, a solution is the 
using of an appropriately asymptotic state observer 
[4] that can be designed as follows. 

Since in (26) 2)( =Krang , let’s consider the 
following state partition: 

T
a XX ][ 21=ξ ,  T

b PSSS ][ 521=ξ              (31) 

wich induces on K, F and Q from (26) the following 
partitions: 
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Let’s define an auxiliary vector z as: 
 baCz ξ+ξ=                 (32) 

where C is the uniquely solution of the equation 
0=+ ba KKC . We obtain: 
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Assume that for our popose the 2CO  
concentration does not interesting; so that from the 
four variables, it must to be estimated only three 
state variables. Then from (34) we shall retain only 
three auxiliary variables 1z , 2z  and 4z given by: 

1111 SXkz += ; 222132 SXkXkz ++−=   

26174 XkXkz −−=                  (34) 

Now we expres this reduced vector z in term of 
measurable 1ζ  and unmeasurable 2ζ  states as: 
 2211 ζ+ζ= CCz                    (35) 
where 21 S=ζ  and TXSX ][ 2112 =ζ , and 1C  and 

2C  are matrices with appropiately dimensions. 
From (33) and (35) one obtains: 
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Since )()det( 63722 kkkkC +−=  that yields  
3)( 2 =Crang  and C2 is a quadratic matrix, then the 

unmeasurable state 2ζ  is given by 
)( 11

1
22 ζ−=ζ − CzC . To estimate these variables we 

use an asymptotic sate observer  [6], described as: 
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whose equations here are particularized as: 
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where Sin, QP and S2 are on-line measurable and D is 
known. 

Since the output y is on-line measurable, from 
(28) the variable S1 will be: 

1221 /)( cScyS −=                (41) 

and thus S1 does not be estimated. As a conclusion, 
by using the asymptotic state observer (40), (41) it 
must be estimated only the variables X1 and X2. 
From (40), (41) a first version of state observer is 
given by: 

22 ˆˆ zDz −=& ;  PQzDz −−= 44 ˆ&̂                      (42) 
( )42226

1
72631 ˆ)ˆ()(ˆ zkzSkkkkkX −−+= −              (43) 

( )43227
1

72632 ˆ)ˆ()(ˆ zkSzkkkkkX −−+= −              (44) 

Using the expresion of z1 from (34), and his 
dynamics from (39), a second version of state 
observer is given by: 

inDSzDz +−= 11 ˆ&̂ ;  PQzDz −−= 44 ˆ&̂              (45) 
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              (47) 

To obtain the on-line estimates 1α̂  and 2α̂  of the 
unknown specific rates 1α  and 2α  we will use a 
linear regressive parameter estimator [4] given by:  

)(ξ+Ψω−=Ψ KGTT&                       (48) 

( ) FD +ξ−ω+Ψω−=Ψ 00
&               (49) 

( )ρΨ−Ψ−ξΓΨ=α ˆˆ 0
T&                (50) 

Γλ+ΓΓΨΨ−=Γ T& ,     0)0( >Γ              (51) 
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where TΨ  is the regressor matrix, Γ  is a diagonal 
gain matrix of the updating law (50), and 0>ω  and 
λ  (forgetting factor) are design parameters at the 
user’s disposal to control the stability and the 
tracking properties of the estimator [4], [6], [9]. This 
estimator will be applied to a submodel of model 
(26), which contains the unknown rates 1α  and 2α . 
So, taking in the acount only the dynamics of the 
substrates S1 and S2, the algorithm (48)-(51) with the 
regressor matrix chosen of the form:   
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Γλ+ΓΨΨΓ−=Γ T& ,  0)0( >Γ                  (56) 

Finally, the full adaptive linearizing algorithm for 
controlling the fermentation bioprocess (6)-(15) is 
made up by combination of the equations (41), (42)-
(44) or (45)-(47) and (52)-(56) with the control law 
(29) rewritten as: 

( 1111132
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ˆˆ)()(1
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−
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ySc
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in
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and is schematized in Fig. 2. 
 
 
4   Simulation Results 
The performances of the desiged controllers have 
been tested through extensive simulation 
experiments by using the process model (6)-(15) 
under realistic conditions. The values of yield 
coefficients used in simulations are [6]: k21 = 3.2, k41 
= 0.77, k42 = 16.7, k43 = 0.53, k61 = 0.75, k63 = 1.5, 
k81 = 0.6, k83 = 0.1, k84 = 1.15, k91 = 1.15, k92 = 1.5, 
k93 = 0.2, k94 = 0.1, k02 = 3.0, k04 = 0.2. 

The reaction rates r1 and r3 are described as: 
iiiiii SXXr α=µ= , 3,1=i , where 

)/( iMiii SKS
i

+µ=µ ∗  - model Monod, with:  
∗µ1  = 0.2 h-1, 

1MK = 0.5 g/l  and ∗µ3  = 0.5 h-1, 
5MK = 

0.4 g/l. The reaction rates r2 and r4 are described as: 
kkkkkk SXXr α=µ=  where 

 
 
 
 
 
 
 
 
 
 
 
  

)//( 2
kk IkkMkkk KSSKS ++µ=µ ∗ - model Haldane, 

with: ∗µ2  = 0.35 h-1, 
2MK = 4 g/l, 

2IK = 21 g/l and 
∗µ4  = 0.5 h-1, 

4MK = 4 mM, 
4IK = 3 mM. 

The value of yield coefficients of the reduced 
model (16) are [6]: k1 = 3.2, k2 = 16.7, k3 = 1.035, k4 
= 1.1935, k5 = 1.5, k6 = 3, k7 = 0.113, and the values 
of the conversion coeffiients  c1 and c2 in (28) are: c1 
= 1.2, c2 = 0.75. 

The system’s behaviour was analyzed assuming 
that the pollutant concentration inS  acts as a 
perturbation of the form presented in Fig. 3 

The behaviour of closed-loop system using the 
adaptive controller (57) by comparison to the 
exactly linearizing law (29) is presented in Fig. 3, 
where the evolutions of output pollution level y and 
of control input D are shown. Fig. 4 shows the 
evolution of some estimated states variables and of 
some specific reaction rates. Note that in these 
figures the graphics indexed by b correspond to the 
benchmark case. To verify the regulation properties 
of the controller for the reference variable, a piece-
wise constant variation was considered as: 5.1* =y  
for ht 350 << ; 75.0* =y  for ht 7035 <≤ ; 

45.0* =y  for ht 10070 <≤ . 
The system evolves in open loop from the time 0 

to =1t  2 h, after which the system is closed by using 
the control law (29) respectively (57). 

For a proper comparison of the two control 
strategies, the simulations were carried out under 
identical conditions and the results were judged 
using the same set of criteria. The value of the gain 
parameter 1λ  in (29) and (57) is 5.11 =λ . 

From graphics in Figs. 4a-4d it can be seen that 
the behaviour of adaptive system, even if this used 
much less priority information, is good, being very 
close to the behaviour of closed loop system in the 
ideal case when the process model is completely 
known. Note also the regulation properties and 
ability of the controller to maintain the controlled 
output y close to his desired values (very low level 
for *y ) despite the process uncertainties.  
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Fig.2. The structure of the adaptive system 
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One can observe a good behaviour both of state 

observer (42)-(44) or (45)-(47) and parameter 
estimator (52)-(56). 
 

5   Conclusions 
Some nonlinear and adaptive control strategies for 
controlling the pollution level for a class of 
nonlinear plants with incompletely known dynamics 
were presented and compared.  

The performances of the proposed controllers 
were analyzed by simulations conducted in the case 
of an anaerobic fermentation process. It can be 
concluded that in most practical situations, when the 
process nonlinearities are not completely known 
and/or the process dynamics are time varying, the 
adaptive controllers are viable alternatives. 
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      Fig.3. The behaviour of nonlinear adaptive system by comparison to behaviour of benchmark system 

               Fig.4. The evolution of some estimated states variables and of some specific reaction rates 
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