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On Designing of Flexible Neuro-Fuzzy Systemsfor Classification
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Abstract:- In the paper we propose a new method for designing flexible neuro-fuzzy systems applied to
classification. The systems are characterized by weighted triangular norms describing the importance of
linguistic variables and rules. An algorithm for complexity reduction of such systems is developed and

simulation results are presented.
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1. Introduction

In literature various neuro-fuzzy systems have been
developed. Some of them are known in literature
under short names such as ANFIS [8], ANNBFIS
[5], DENFIS [9], FALCON [11], GARIC [2],
NEFCLASS [12], NEFPROX [12], [13], SANFIS
[18] and others. The original concept of flexible
neuro-fuzzy systems have been proposed and studied
in [3], [4], [14], [15], [16]. It is well known that
neuro-fuzzy systems combine the natural language
description of fuzzy systems and the learning
properties of neural networks. In the paper we
propose a new method for designing flexible neuro-
fuzzy systems applied to classification. The systems
are characterized by weighted triangular norms
describing the importance of linguistic variables and
rules. An algorithm for complexity reduction of such
systems will be developed. In subsequent stages of
the algorithm we reduce number of discretization
points, number of inputs, number of rules and
number of antecedents. The algorithm will be tested
using well known benchmarks.

2. Mamdani and L ogical Type
Neuro-Fuzzy Systems

In this paper we consider multi-input, single-output
neuro-fuzzy system mapping X —Y, where
XcR" and YcR. The fuzzifier performs
amapping from the observed crisp input space
X cR" to the fuzzy sets defined in X . The most
commonly used fuzzifier is the singleton fuzzifier
which maps X=[x,...,X,Je X into afuzzy set

A < X characterized by the membership function

1)

Xl Xl

X
X
The fuzzy rule base consists of a collection of N

fuzzy IF-THEN rules in the form
R¥: IFxis A THEN yis B¢ )

where x=[x,...x Je X, yeY, A AS. . A
are fuzzy sets characterized by membership
functions ,uAk(&), whereas B* are fuzzy sets
characterized by membership functions ., (y),

respectively, k=1,...,N.

The fuzzy inference determines a mapping from
the fuzzy sets in the input space X to the fuzzy sets
in the output space Y. Each of N rules (2)

determines afuzzy set B*cY given by the
compositional rule of inference

B* = A'o(A*  B) 3)

where A*=A"xA*x..xA". Fuzzy sets B,
according to the formula (3), are characterized by

membership functions expressed by the sup-star
composition:

Ha (v)= S:EJE{T{#A (x), Hpke smk s (x, Y)H (4)

where T can be any operator in the class of t-norms.
It is easily seen that for acrisp input Xe X, i.e.
a singleton fuzzifier (1), formula (4) becomes

ﬂgk (y) = ﬂAlkX..XA]k—}Bk (X’ y)
= /’lAk_,Bk (X’ y) (5)

= 1, (%), 221 (y))



where I(-) is an “engineering implication”
(Mamdani approach) or fuzzy implication [6]. The
aggregation operator, applied in order to obtain the
fuzzy set B’ based on fuzzy sets B, is the t-norm
or t-konorm operator, depending on the type of fuzzy
implication.

The defuzzifier performs a mapping from a fuzzy
set B’ to acrisp point y in YcR. The COA
(centre of area) method is defined by the following
formula

[yuze (y)ay
y -y (6)
[ (y)dly
or by
> V' ly (yr )
y= 'Zl:N (7)
> ue(y')

in the discrete form, where y' denotes centres of the
membership functions _ (y), i.e. for r=1,...,N

p (v)= rUEaYX{/JBr (y)} (8)

In [14-16] we proposed a general architecture of
neuro-fuzzy structures. It includes both the Mamdani
and logical type of inference

N
r

y' -agr, (%, ¥')
=1

N ©)
> agr,(x.5')

y=1f(x)="

where

sfi,. &y},

k=1

for Mamdani approach
gy )=y (10)

T &y}

for logical approach

and

T{Tk (X),ﬂBk (yr )} '

for Mamdani approach
(11)

| fuzzy(Tk (X)',UBk (yr )) )
for logical approach
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The firing strength of rules is given by

7, (%)= i-El{uAik (% )}

In this paper, starting with a description (9)-(12),
we develop anew method for designing and
reduction of neuro-fuzzy systems. The method is
based on the concept of the weighted triangular
norms [16]. In subsequent stages we reduce number
of discretization points, number of inputs, number of
rules and number of antecedents. The method is
tested using well known benchmarks. It should be
emphasized that in this paper we do not assume that
the number of terms in formula (7) is equal to the
number of rules N. We allow to discretize the
integrals in formula (6) using R points. In the
simulations we investigate various neuro-fuzzy
systems for different values of N and R. To our
best knowledge such problems have not been studied
yet in the literature.

(12)

3. Flexibility Parametersin
Neuro-Fuzzy Systems

3.1. Weighted triangular norms

In [16] we introduced anew concept of the
weighted t-norm defined by

T at - Hiovi-al @

to connect the antecedents in each rule, k=1,...,N,
and the weighted t-norm and t-conorm

T e, ag W, W )= ;El{l—vvﬁgr(l—ak)} (14)
and
St autr.or )= Sfaral 09

to aggregate the individual rules in the logical and
Mamdani models, respectively. It is easily seen that
formula (13) can be applied to the evaluation of an
importance of input linguistic values, and the
weighted t-norm (14) or t-conorm (15) to a selection
of important rules. The results can be depicted in the
form of diagrams. In Fig. 1 we show an example of
a diagram for afuzzy system having four rules
(N =4) and two inputs (n=2) described by

20



. {IFXlISA 71)AND x, is Al(w; ) o
THENy is B
IFxllsA vv12 ANszlsAZ( )_V\f‘gr
THEN yis B? 17 (16)
IF X, is A7(W,) AND x, is AX(w5,) |
R’ W
THEN yis B |
[ xis A ) ano s wor.) ],
THEN yis B* 1

Observe that the third rule is “weaker” than the
others and the linguistic value A corresponds to

a low value of w; .

Fig. 1. Exemplary weights representation in a fuzzy
system with four rules and two inputs (dark areas
correspond to low values of weights and vice versa)

3.2. Soft triangular norms

In this section we recall a concept of soft fuzzy
norms proposed by Yager and Filev[19]. Let
a,...,a, be numbers in the unit interval that are to

be aggregated. The soft version of triangular norms
suggested by Yager and Filev is defined by

Tal=1-« )nga +aT{a} (17)
and

Sfaal=01-a) Za+a8{a} (18)

i=1

where ae [0,1]. They allow to balance between the

arithmetic average aggregator and the triangular
norm aggregator depending on parameter ¢ .

4. New Flexible Fuzzy Systems

Neuro-fuzzy architectures developed so far in the
literature are based on the discretization of formula
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(6) with the assumption that number of terms in
a corresponding formula (7) is equal to the number
of rules N. In this paper we relax that assumption
and replace formula (7) by

(19)

where R>1. For further investigations we choose
neuro-fuzzy systems of alogical type with an
S-implication used in formula (5). Moreover, we
incorporate flexibility parameters, presented in
Section 3, into construction new neuro-fuzzy
systems. These parameters have the following
interpretation:

1) weights in antecedents of the rules w,  [01]

=1...,n, k=1...,N,
2) weights in aggregation of the rules
woelo1], k=1...,N,
3) soft strength of firing
parameter ¢, k=1,...,N,

controlled by

4) soft implication controlled by parameter ¢,
k=1...,N,
5) soft aggregation of rules controlled by parameter
o,
In view of above assumptions,
a flexible neuro-fuzzy system given by

"y -agr, (x,5')
y= ;R (20)

rZl:agrr (X y' )

we derive

where
b gl (%o 1 ()
wlX)= M,T*{mxi),...,ﬂAJ )} @)

g g
Wigere oo W

Ikr(, r)_[(l O‘k)an(l 7, (X )ﬂBk(y )) j(zz)

o +akS{1 rk ﬂBk(y )}

- avg(l,, (% 7)., (R, 7))+ )
B TP -3 W A S &
+o T{ i\f e y }

agr, (%, )=



The general architecture of the above system is
depicted in Fig. 2.

ﬂ 2% 5%) agry(x, y4) }7
Do)

agra(x, %) }7 w Y
e

agrg(X, y®)

Fig. 2. The scheme of neuro-fuzzy system

It is easily seen that system (20)-(23) contains
N(3n+5)+R+1 or 3p+5N+R+1 parameters to

be determined in the process of learning, where p is
a number of antecedents.

5. Algorithm of Reduction
of Neuro-Fuzzy Systems

In this section we develop an algorithm of
reduction of neuro-fuzzy systems. The algorithm is
based on analysis of weights in antecedents of the
rules w,el01], i=1..,n, k=1..,N, and
weights  in  aggregation of the  rules
W e[01], k=1...,N. The flowchart of the

algorithm is depicted in Fig. 3.

The flowchart in Fig. 3 comprises 4-parts. First,
we determine performance of the initial system
(before the reduction process); for example, in a case
of the classification we determine a percentage of

mistakes of the system. The weights w*e [0]],
i =1,...,n are calculated using

1 N
Vvix = Z Vvifk (24)
Nig -

In subsequent stages we reduce number of
discretization points, number of inputs, number of
rules and number of antecedents.
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Performance determination
of the initial system

[ Save the initial system |

[ Reduction of the r-th point of discretization |

[ Learning by a single epoch |

Performance determination
of the reduced system

Acceptable % Restore
performance? M N the initial system A
Reple{ce the initial system
by the reduced system

L3 Weights of inputs determination |

Weight w* S
of the i-th input<1

Y
[ Reduction of the i-th input |

[ Learning by a single epoch |

Performance determination
of the reduced system

Acceptable % N Restore
performance? the initial system A
Y

Replz-;ce the initial system
by the reduced system

Weight w, 29" of
the k-th rule<1

A4
| Reduction o the k-th rule ]

| Learning by a single epoch ]

Performance determination
of the reduced system

Acceptable % Restore
performance? M N the initial system A
Repla'ce the initial system
by the reduced system

Weight w, * of an
antecedent A<1

A4
| Reduction of the antecedent A¥ ]

| Learning by a single epoch ]

Performance determination
of the reduced system

Acceptable % N Restore
performance? M the initial system A

| Repléce the initial system l_

by the reduced system

Fig. 3. The algorithm of reduction
of neuro-fuzzy systems
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6. Simulation Results Table 2. Simulation results

The neuro-fuzzy system is simulated on Glass GLASS | DENTIFICATION PROBLEM
Identification problem and Wisconsin Breast Cancer N
problem [17]. R 1 2 3 2
o ) 9/1/2/9/35 | 9/2/2/18/67 | 9/3/2/27/99 | 9/4/2/36/131
6.1. GlassIdentification Problem 21202114 | 4212/6/31 | 5/3/2/12/54 | 4/3/2/11/51
o . 3 9/1/3/9/36 | 9/2/3/18/68 | 9/3/3/27/100 | 9/4/3/36/132
The Glass Identification problem contains 214 201/3/2115 | 5/2/3/9/41 | 5/3/3/10/49 | 6/4/3/19/81
; ; : ; ; 9/1/4I9/37 | 9/2/4/18/69 | 9/3/4I27/101 | 9/4/436/133
mst_a nces and each |r_lstan_ce 1S descrlbed_ by nine 4 2/1/4/2/116 | 5/2/4/6/33 | 4/3/4/10/50 | 7/4/3/14/66
attributes (RI: refractive index, Na: sodium, Mg:
magnesium, Al: aluminium, Si: silicon, K: Table 3. Simulation results
potassium, Ca: calcium, Ba: barium, Fe: iron). All GLASSIDENTIFICATION PROBLEM
attributes are continuous. There are two classes: the N
window glass and the non-window glass. In our R 1 2 3 4/
experiments, all sets are divided into a learning 2 gng g";z//‘) igzﬁ’ giz//‘)
. 0 (1] 0 0
sequence (171 sets) an_d atesting sequence (43 sets). ; 50% 39% 53% 1%
The study of the classification of the types of glass 5% 5% 6% 9%
was motivated by criminological investigation. At 4 4152{; ‘t)f;/‘) 4070? igz//‘)
. - 0 0 0 0
the scene of the crime, the glass left can be used as
evidence if it is correctly identified. Table 4. Simulation results
The experimental results for the Glass GLASS IDENTIFCATION PROBLEM
Identification problem are depicted in tables 1, 2, 3, N
4, 5 and figures 4, 5, 6, 7, 8. In Table 1 we show the R 1 2 3 4
percentage of mistakes in the learning and testing o [T X X K K X X K X R K| Ry Xt K K
sequences before and after reduction, e.g. for N =3 % %0 % | %o ACA | ACAYA | R Al
and R=2 we have 2.92%/2.34% for the learning I Xy Ror Koo KooK Ker Ko AL
sequence before and after reduction and 3 X[Xﬂ“fxs . “A;% R AL A A A A
. 1 X0
0.009%/0.00% for the testing sequence before and M AR A A
after reduction. In Table 2 we present number of X Ro Al
inputs, rules, points of discretization, number of o A A A
antecedents and number of parameters before and % % X | S g % | AL AL A
after reduction. In Table 3 we show degree of Pl rnn | MM e | AR
learning time reduction [%] and degree of learning A A2 A A
time reduction per asingle parameter [%] for ALY
areduced system. In Table 4 we present reduced ] ]
inputs and antecedents. In Table 5 we depict Table 5. Simulation results
percentage of neuro-fuzzy systems haVing GLASSIDENTIFICATION PROBLEM
a particular input (attribute) after the reduction N1 1] 122121333 2]4]24
process and percentage of inputs (attributes) Ri2)13|4)2]3] 412131412134
corresponding to a particular neuro-fuzzy system o N Sl A N A N N B . ii
. - | - -l vV ]-|- - - - -
after the reduction process. =
Xx|v] v v | iv|iv] v |v Y v |v| v |100
Table 1. Simulation results |- -1 -|-1-[v]v - v{v]|v|s0
GLASSIDENTIFICATION PROBLEM YG _ _ R _ _ _ _ B _ N R R
1 2 N 3 7 X | - - - lv|v| - v | - v v [v| v [58
6.43%/5.85% | 2.34%/2.34% | 2.92%/2.34% | 2.34%/2.34% X[Vv] v VIV iVv]V [V |[V]V - v v |92
9.30%/9.30% | 2.33%/2.33% | 0.00%/0.00% | 0.00%/0.00% %Sl -1 - | - v|v|v] v v v ]| v v]v |7
9.30%/9.30% | 2.33%/2.33% | 0.00%/0.00% | 0.00%/0.00%
5.85%1/5.85% | 2.34%/2.34% | 2.34%/2.34% | 2.34%/1.75% In Fig_ 4 we show degree of parameter number
9.30%/9.30% | 2.33%/2.33% | 0.00%/0.00% | 0.00%/0.00%

reduction [%], in Fig. 5 degree of learning time
reduction [%], in Fig. 6 degree of learning time
reduction per asingle parameter [%], in Fig. 7



percentage of neuro-fuzzy systems having
a particular input (attribute) after the reduction
process, in Fig. 8 percentage of inputs (attributes)
corresponding to aparticular neuro-fuzzy system
after the reduction process.
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o

Fig. 4. Degree of parameter number reduction [%]

for the Glass Identification problem
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. 5. Degree of learning time reduction [%]
for the Glass Identification problem
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Fig. 6. Degree of learning time reduction
per a single parameter [%]
for the Glass Identification problem
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Fig. 7. Percentage of neuro-fuzzy systems having
a particular input (attribute) after the reduction
process for the Glass Identification problem
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Fig. 8. Percentage of inputs (attributes)
corresponding to a particular neuro-fuzzy system
after the reduction process
for the Glass Identification problem

6.2. Wisconsin Breast Cancer problem

The Wisconsin Breast Cancer data contains 699
instances (of which 16 instances have asingle
missing attribute) and each instance is described by
nine attributes (clump thickness, uniformity of cell
size, uniformity of cell shape, marginal adhesion,
single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli, mitoses). We removed
those 16 instances and used the remaining 683
instances. Out of 683 data samples, 444 cases
represent benign breast cancer and 239 cases
describe malignant breast cancer. The problem is to
classify whether a new case is a benign (class 1) or
malignant (class 2) type of cancer. In our
experiments, all sets are divided into alearning
sequence (478 sets) and atesting sequence (205
sets).

The experimental results for the Wisconsin Breast
Cancer problem are depicted in tables 6, 7, 8, 9, 10
and figures 9, 10, 11, 12, 13. The meaning of tables
and figures in this example is analogous to that
presented in the previous example.
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Table 6. Simulation results

WISCONSIN BREAST CANCER PROBLEM

N
1 2 3 4
3.35%/3.35% | 2.72%/2.51% | 2.51%/2.51% | 2.51%/2.51%
0.98%/0.98% | 1.46%/1.46% | 1.46%/1.46% | 1.46%/1.46%
2.72%/2.72% | 2.72%/2.72% | 2.51%/2.51% | 3.35%/3.14%
1.46%/0.98% | 1.46%/0.98% | 0.98%/0.98% | 0.98%/0.98%
2.51%/2.51% | 2.51%/2.51% | 2.72%/2.51% | 2.51%/2.51%
1.46%/1.46% | 1.46%/0.98% | 1.46%/1.46% | 0.98%/0.98%
Table 7. Simulation results
WISCONSIN BREAST CANCER PROBLEM
N
1 2 3 4
9/1/2/9/35 9/2/2/18/67 9/3/2/27/99 | 9/4/2/36/131
5/1/2/5/23 6/1/2/6/26 7/2/2/14/55 7/1/2/7/29
9/1/3/9/36 9/2/3/18/68 | 9/3/3/27/100 | 9/4/3/36/132
6/1/3/6/27 6/2/3/12/50 7/3/2/18/72 5/3/3/15/64
9/1/4/9/37 9/2/4/18/69 | 9/3/4/27/101 | 9/4/4/36/133
6/1/4/6/28 5/2/3/10/44 6/1/3/6/27 8/3/3/23/88
Table 8. Simulation results
WISCONSIN BREAST CANCER PROBLEM
N
1 2 3 4/
48% 68% 51% 81%
25% 22% 14% 20%
33% 33% 44% 57%
14% 12% 24% 15%
27% 48% 80% 44%
6% 22% 30% 17%
Table 9. Simulation results
WISCONSIN BREAST CANCER PROBLEM
N
1 2 3 4
o X Xyr X0 B X+ X0 rule,:
»a » X, rul
2 A% rule, % UG rule,» rule,
. I AR PO S
v X, X,1 X,
Xpr Xy Xg 20 Xyt X R rule,
Cne | K% %e
v X, X X
%o X1 X, & 47:(5 %'l e, rule,s | %0 rule;s v
y 7
Table 10. Simulation results
WISCONSIN BREAST CANCER PROBLEM
N|J1l]1]1]|]2|22|3]|3]|3|4]|4]4
Rl2 (342|342 ]|3|4|2]|3]4
|v|v]|-|-|fv]|]v]-|fv]-|-]Vv]Vv]| 58
1 -1-1-1-1-1-1v|v]-]lv]-|-125
|v]|v]v]v]v]|]v]v]|]Vv]|]Vv]|]Vv]-]|vVv] 9
| -1-1-1-1-{-1-1-1-1-1-1v 8
X | - - lv]v] - -|lv]|v]|]v]v]-]v] 58
X5 v|iv]v]v \% v|v]|]v]v]100
X, Vv|iv]v]v v -|v|v]v]v] 92
X v|iv]v]yv \Y v|v]v|v]1l00
| -|v]v]v]v]-]v]v]|]v]|]Vv]|]Vv]vVv] 83
56 [ 67 [ 67 67 |67 |56 ]|78|78|67 (78|56 (89| [%]

Fig.

Fig. 10. Degree of learning time reduction [%)]
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Fig. 11. Degree of learning time reduction

per a single parameter [%]

for the Wisconsin Breast Cancer problem

7. Final remarks

In the paper anew method for designing flexible
neuro-fuzzy systems has been presented. Our
algorithm allows to find a compromise between
accuracy and complexity of neuro-fuzzy systems.
This leads to transparent fuzzy rules and improves
interpretability of such systems.
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Fig. 12. Percentage of neuro-fuzzy systems having

a particular input (attribute) after the reduction

process for the Wisconsin Breast Cancer problem
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after the reduction process
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