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11..  IInnttrroodduuccttiioonn  
In literature various neuro-fuzzy systems have been 
developed. Some of them are known in literature 
under short names such as ANFIS [8], ANNBFIS 
[5], DENFIS [9], FALCON [11], GARIC [2], 
NEFCLASS [12], NEFPROX [12], [13], SANFIS 
[18] and others. The original concept of flexible 
neuro-fuzzy systems have been proposed and studied 
in [3], [4], [14], [15], [16]. It is well known that 
neuro-fuzzy systems combine the natural language 
description of fuzzy systems and the learning 
properties of neural networks. In the paper we 
propose a new method for designing flexible neuro-
fuzzy systems applied to classification. The systems 
are characterized by weighted triangular norms 
describing the importance of linguistic variables and 
rules. An algorithm for complexity reduction of such 
systems will be developed. In subsequent stages of 
the algorithm we reduce number of discretization 
points, number of inputs, number of rules and 
number of antecedents. The algorithm will be tested 
using well known benchmarks. 

22..  MMaammddaannii  aanndd  LLooggiiccaall  TTyyppee    
NNeeuurroo--FFuuzzzzyy  SSyysstteemmss  

In this paper we consider multi-input, single-output 
neuro-fuzzy system mapping YX → , where 

nRX ⊂  and RY ⊂ . The fuzzifier performs 
a mapping from the observed crisp input space 

nRX ⊂  to the fuzzy sets defined in X . The most 
commonly used fuzzifier is the singleton fuzzifier 
which maps [ ] Xx ∈= nxx ,,1 K  into a fuzzy set 

X⊆′A  characterized by the membership function 
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  The fuzzy rule base consists of a collection of N  
fuzzy IF-THEN rules in the form 

 ( ) kkk ByR isTHENisIF: Ax  (2) 

where [ ] Xx ∈= nxx ,,1 K , Y∈y , k
n

kk AAA ,,, 21 K  

are fuzzy sets characterized by membership 
functions ( )iA

xk
i

µ , whereas kB  are fuzzy sets 

characterized by membership functions ( )ykB
µ , 

respectively, Nk ,,1K= . 
  The fuzzy inference determines a mapping from 
the fuzzy sets in the input space X  to the fuzzy sets 
in the output space Y . Each of N  rules (2) 
determines a fuzzy set Y⊂kB  given by the 
compositional rule of inference 

 ( )kkk BAB →′= Ao  (3) 

where k
n

kkk AAA ×××= K21A . Fuzzy sets kB , 

according to the formula (3), are characterized by 
membership functions expressed by the sup-star 
composition: 
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where T  can be any operator in the class of t-norms. 
It is easily seen that for a crisp input Xx ∈ , i.e. 
a singleton fuzzifier (1), formula (4) becomes 
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where ( )⋅I  is an “engineering implication” 
(Mamdani approach) or fuzzy implication [6]. The 
aggregation operator, applied in order to obtain the 
fuzzy set B′  based on fuzzy sets kB , is the t-norm 
or t-konorm operator, depending on the type of fuzzy 
implication. 
  The defuzzifier performs a mapping from a fuzzy 
set B′  to a crisp point y  in RY ⊂ . The COA 
(centre of area) method is defined by the following 
formula 
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or by 
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in the discrete form, where ry  denotes centres of the 
membership functions ( )yrB

µ , i.e. for Nr ,,1K=  

 ( ) ( ){ }yy rr By

r

B
µµ
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  In [14-16] we proposed a general architecture of 
neuro-fuzzy structures. It includes both the Mamdani 
and logical type of inference 
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where 
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and 
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The firing strength of rules is given by 
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  In this paper, starting with a description (9)-(12), 
we develop a new method for designing and 
reduction of neuro-fuzzy systems. The method is 
based on the concept of the weighted triangular 
norms [16]. In subsequent stages we reduce number 
of discretization points, number of inputs, number of 
rules and number of antecedents. The method is 
tested using well known benchmarks. It should be 
emphasized that in this paper we do not assume that 
the number of terms in formula (7) is equal to the 
number of rules N . We allow to discretize the 
integrals in formula (6) using R  points. In the 
simulations we investigate various neuro-fuzzy 
systems for different values of N  and R . To our 
best knowledge such problems have not been studied 
yet in the literature. 

33..  FFlleexxiibbiilliittyy  PPaarraammeetteerrss  iinn  
NNeeuurroo--FFuuzzzzyy  SSyysstteemmss  

3.1. Weighted triangular norms 

 In [16] we introduced a new concept of the 
weighted t-norm defined by 
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to connect the antecedents in each rule, Nk ,,1K= , 
and the weighted t-norm and t-conorm 
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to aggregate the individual rules in the logical and 
Mamdani models, respectively. It is easily seen that 
formula (13) can be applied to the evaluation of an 
importance of input linguistic values, and the 
weighted t-norm (14) or t-conorm (15) to a selection 
of important rules. The results can be depicted in the 
form of diagrams. In Fig. 1 we show an example of 
a diagram for a fuzzy system having four rules 
( 4=N ) and two inputs ( 2=n ) described by 
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  Observe that the third rule is “weaker” than the 
others and the linguistic value 1

2A  corresponds to 

a low value of τ
1,2w . 

2,,1K=i

4,
,1

K

=
k

agrwτw

   
Fig. 1. Exemplary weights representation in a fuzzy 
system with four rules and two inputs (dark areas 

correspond to low values of weights and vice versa) 

3.2. Soft triangular norms 

 In this section we recall a concept of soft fuzzy 
norms proposed by Yager and Filev [19]. Let 

naa ,,1 K  be numbers in the unit interval that are to 

be aggregated. The soft version of triangular norms 
suggested by Yager and Filev is defined by 
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where [ ]1,0∈α . They allow to balance between the 
arithmetic average aggregator and the triangular 
norm aggregator depending on parameter α . 

44..  NNeeww  FFlleexxiibbllee  FFuuzzzzyy  SSyysstteemmss  
 Neuro-fuzzy architectures developed so far in the 
literature are based on the discretization of formula 

(6) with the assumption that number of terms in 
a corresponding formula (7) is equal to the number 
of rules N . In this paper we relax that assumption 
and replace formula (7) by 
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where 1≥R . For further investigations we choose 
neuro-fuzzy systems of a logical type with an 
S-implication used in formula (5). Moreover, we 
incorporate flexibility parameters, presented in 
Section 3, into construction new neuro-fuzzy 
systems. These parameters have the following 
interpretation: 
1) weights in antecedents of the rules [ ] 10,wτ

i,k ∈ , 

ni ,,1K= , Nk ,,1K= , 

2) weights in aggregation of the rules 
[ ] 10agr ,wk ∈ , Nk ,,1K= , 

3) soft strength of firing controlled by 
parameter τα k , Nk ,,1K= , 

4) soft implication controlled by parameter I
kα , 

Nk ,,1K= , 

5) soft aggregation of rules controlled by parameter 
agrα . 

  In view of above assumptions, we derive 
a flexible neuro-fuzzy system given by 
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where 
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The general architecture of the above system is 
depicted in Fig. 2. 
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Fig. 2. The scheme of neuro-fuzzy system 

It is easily seen that system (20)-(23) contains 
( ) 153 +++ RnN  or 153 +++ RNp  parameters to 

be determined in the process of learning, where p  is 

a number of antecedents. 

55..  AAllggoorriitthhmm  ooff  RReedduuccttiioonn    
ooff  NNeeuurroo--FFuuzzzzyy  SSyysstteemmss  

In this section we develop an algorithm of 
reduction of neuro-fuzzy systems. The algorithm is 
based on analysis of weights in antecedents of the 
rules [ ] 10,wτ

i,k ∈ , ni ,,1K= , Nk ,,1K= , and 

weights in aggregation of the rules 
[ ] 10agr ,wk ∈ , Nk ,,1K= . The flowchart of the 

algorithm is depicted in Fig. 3. 
The flowchart in Fig. 3 comprises 4-parts. First, 

we determine performance of the initial system 
(before the reduction process); for example, in a case 
of the classification we determine a percentage of 
mistakes of the system. The weights [ ] 10,wx

i ∈ , 

ni ,,1K=  are calculated using 

 ∑
=

=
N

k
ki

x
i w

N
w

1
,

1 τ  (24) 

In subsequent stages we reduce number of 
discretization points, number of inputs, number of 
rules and number of antecedents. 
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Fig. 3. The algorithm of reduction  
of neuro-fuzzy systems 
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66..  SSiimmuullaattiioonn  RReessuullttss  
The neuro-fuzzy system is simulated on Glass 
Identification problem and Wisconsin Breast Cancer 
problem [17]. 

6.1. Glass Identification Problem 

The Glass Identification problem contains 214 
instances and each instance is described by nine 
attributes (RI: refractive index, Na: sodium, Mg: 
magnesium, Al: aluminium, Si: silicon, K: 
potassium, Ca: calcium, Ba: barium, Fe: iron). All 
attributes are continuous. There are two classes: the 
window glass and the non-window glass. In our 
experiments, all sets are divided into a learning 
sequence (171 sets) and a testing sequence (43 sets). 
The study of the classification of the types of glass 
was motivated by criminological investigation. At 
the scene of the crime, the glass left can be used as 
evidence if it is correctly identified. 

The experimental results for the Glass 
Identification problem are depicted in tables 1, 2, 3, 
4, 5 and figures 4, 5, 6, 7, 8. In Table 1 we show the 
percentage of mistakes in the learning and testing 
sequences before and after reduction, e.g. for 3=N  
and 2=R  we have 2.92%/2.34% for the learning 
sequence before and after reduction and 
0.00%/0.00% for the testing sequence before and 
after reduction. In Table 2 we present number of 
inputs, rules, points of discretization, number of 
antecedents and number of parameters before and 
after reduction. In Table 3 we show degree of 
learning time reduction [%] and degree of learning 
time reduction per a single parameter [%] for 
a reduced system. In Table 4 we present reduced 
inputs and antecedents. In Table 5 we depict 
percentage of neuro-fuzzy systems having 
a particular input (attribute) after the reduction 
process and percentage of inputs (attributes) 
corresponding to a particular neuro-fuzzy system 
after the reduction process. 

Table 1. Simulation results 

GLASS IDENTIFICATION PROBLEM 

N R 
1 2 3 4 

6.43%/5.85% 2.34%/2.34% 2.92%/2.34% 2.34%/2.34% 
2 

9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00% 
5.85%/5.85% 2.92%/2.92% 2.34%/2.34% 2.34%/2.34% 

3 
9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00% 
5.85%/5.85% 2.34%/2.34% 2.34%/2.34% 2.34%/1.75% 

4 
9.30%/9.30% 2.33%/2.33% 0.00%/0.00% 0.00%/0.00% 

 

Table 2. Simulation results 

GLASS IDENTIFICATION PROBLEM 

N R 
1 2 3 4 

2 
9/1/2/9/35 
2/1/2/2/14 

9/2/2/18/67 
4/2/2/6/31 

9/3/2/27/99 
5/3/2/12/54 

9/4/2/36/131 
4/3/2/11/51 

3 
9/1/3/9/36 
2/1/3/2/15 

9/2/3/18/68 
5/2/3/9/41 

9/3/3/27/100 
5/3/3/10/49 

9/4/3/36/132 
6/4/3/19/81 

4 
9/1/4/9/37 
2/1/4/2/16 

9/2/4/18/69 
5/2/4/6/33 

9/3/4/27/101 
4/3/4/10/50 

9/4/4/36/133 
7/4/3/14/66 

Table 3. Simulation results 

GLASS IDENTIFICATION PROBLEM 

N R 
1 2 3 4/ 

66% 63% 53% 68% 
2 

28% 27% 19% 24% 
50% 39% 53% 41% 

3 
-5% 5% 6% 9% 
45% 47% 47% 55% 

4 
-12% 0% 0% 15% 

Table 4. Simulation results 

GLASS IDENTIFICATION PROBLEM 

N R 
1 2 3 4 

2 
1x , 

2x , 
4x , 

5x , 

6x , 
7x , 

9x  
1x , 

2x , 
4x , 

5x , 

6x , 1
7A , 2

8A  
1x , 

2x , 
5x , 

6x , 

1
4A , 1

9A , 3
4A  

1x , 
2x , 

5x , 
6x , 

8x , 1
4A , 

4rule  

3 
1x , 

2x , 
4x , 

5x , 

6x , 
7x , 

9x  
1x , 

4x , 
5x , 

6x , 
1
9A  

2x , 
5x , 

6x , 
7x , 

1
1A , 1

9A , 2
3A , 

2
8A , 2

9A , 3
4A  

2x , 
5x , 

6x , 1
1A , 

1
4A , 2

1A , 3
3A , 

4
4A  

4 
1x , 

2x , 
4x , 

5x , 

6x , 
7x , 

9x  

1x , 
5x , 

6x , 
7x , 

1
3A , 1

4A , 1
9A , 

2
2A  

1x , 
2x , 

4x , 
5x , 

6x , 1
7A , 2

3A  

2x , 
6x , 1

1A , 

1
4A , 1

5A , 1
7A , 

1
8A , 1

9A , 2
1A , 

2
3A , 2

4A , 2
5A , 

2
7A , 3

1A , 3
3A , 

4
5A , 1y  

Table 5. Simulation results 

GLASS IDENTIFICATION PROBLEM  

N 
R 

1 
2 

1 
3 

1 
4 

2 
2 

2 
3 

2 
4 

3 
2 

3 
3 

3 
4 

4 
2 

4 
3 

4 
4 

 

1x  - - - - - - - v - - v v 25 

2x  - - - - v v - - - - - - 17 

3x  v v v v v v v v v v v v 100 

4x  - - - - - v v v - v v v 50 

5x  - - - - - - - - - - - v 8 

6x  - - - - - - - - - - - - 0 

7x  - - - v v - v - v v v v 58 

8x  v v v v v v v v v - v v 92 

9x  - - - v v v v v v v v v 75 

 22 22 22 44 56 56 56 56 44 44 67 78 [%] 

In Fig. 4 we show degree of parameter number 
reduction [%], in Fig. 5 degree of learning time 
reduction [%], in Fig. 6 degree of learning time 
reduction per a single parameter [%], in Fig. 7 
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percentage of neuro-fuzzy systems having 
a particular input (attribute) after the reduction 
process, in Fig. 8 percentage of inputs (attributes) 
corresponding to a particular neuro-fuzzy system 
after the reduction process. 
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Fig. 4. Degree of parameter number reduction [%]  
for the Glass Identification problem 
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Fig. 5. Degree of learning time reduction [%]  
for the Glass Identification problem 

-20%

0%

20%

40%

N
=

1 
R

=
2

N
=

1 
R

=
3

N
=

1 
R

=
4

N
=

2 
R

=
2

N
=

2 
R

=
3

N
=

2 
R

=
4

N
=

3 
R

=
2

N
=

3 
R

=
3

N
=

3 
R

=
4

N
=

4 
R

=
2

N
=

4 
R

=
3

N
=

4 
R

=
4

System's version

D
eg

re
e 

of
 le

ar
ni

ng
 t

im
e 

re
du

ct
io

n 
pe

r 
 a

 s
in

gl
e 

pa
ra

m
et

er
 [

%
]

 

Fig. 6. Degree of learning time reduction  
per a single parameter [%]  

for the Glass Identification problem 
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Fig. 7. Percentage of neuro-fuzzy systems having 
a particular input (attribute) after the reduction 

process for the Glass Identification problem 
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Fig. 8. Percentage of inputs (attributes) 
corresponding to a particular neuro-fuzzy system 

after the reduction process  
for the Glass Identification problem 

6.2. Wisconsin Breast Cancer problem 

The Wisconsin Breast Cancer data contains 699 
instances (of which 16 instances have a single 
missing attribute) and each instance is described by 
nine attributes (clump thickness, uniformity of cell 
size, uniformity of cell shape, marginal adhesion, 
single epithelial cell size, bare nuclei, bland 
chromatin, normal nucleoli, mitoses). We removed 
those 16 instances and used the remaining 683 
instances. Out of 683 data samples, 444 cases 
represent benign breast cancer and 239 cases 
describe malignant breast cancer. The problem is to 
classify whether a new case is a benign (class 1) or 
malignant (class 2) type of cancer. In our 
experiments, all sets are divided into a learning 
sequence (478 sets) and a testing sequence (205 
sets). 

The experimental results for the Wisconsin Breast 
Cancer problem are depicted in tables 6, 7, 8, 9, 10 
and figures 9, 10, 11, 12, 13. The meaning of tables 
and figures in this example is analogous to that 
presented in the previous example. 
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Table 6. Simulation results 

WISCONSIN BREAST CANCER PROBLEM 

N R 
1 2 3 4 

3.35%/3.35% 2.72%/2.51% 2.51%/2.51% 2.51%/2.51% 
2 

0.98%/0.98% 1.46%/1.46% 1.46%/1.46% 1.46%/1.46% 
2.72%/2.72% 2.72%/2.72% 2.51%/2.51% 3.35%/3.14% 

3 
1.46%/0.98% 1.46%/0.98% 0.98%/0.98% 0.98%/0.98% 
2.51%/2.51% 2.51%/2.51% 2.72%/2.51% 2.51%/2.51% 

4 
1.46%/1.46% 1.46%/0.98% 1.46%/1.46% 0.98%/0.98% 

Table 7. Simulation results 

WISCONSIN BREAST CANCER PROBLEM 

N R 
1 2 3 4 

2 
9/1/2/9/35 
5/1/2/5/23 

9/2/2/18/67 
6/1/2/6/26 

9/3/2/27/99 
7/2/2/14/55 

9/4/2/36/131 
7/1/2/7/29 

3 
9/1/3/9/36 
6/1/3/6/27 

9/2/3/18/68 
6/2/3/12/50 

9/3/3/27/100 
7/3/2/18/72 

9/4/3/36/132 
5/3/3/15/64 

4 
9/1/4/9/37 
6/1/4/6/28 

9/2/4/18/69 
5/2/3/10/44 

9/3/4/27/101 
6/1/3/6/27 

9/4/4/36/133 
8/3/3/23/88 

Table 8. Simulation results 

WISCONSIN BREAST CANCER PROBLEM 

N R 
1 2 3 4/ 

48% 68% 51% 81% 
2 

25% 22% 14% 20% 
33% 33% 44% 57% 

3 
14% 12% 24% 15% 
27% 48% 80% 44% 

4 
6% 22% 30% 17% 

Table 9. Simulation results 

WISCONSIN BREAST CANCER PROBLEM 

N R 
1 2 3 4 

2 2x , 
4x , 

5x  1x , 
2x , 

4x , 

2rule  1x , 
4x , 

2rule  1x , 
4x , 

2rule , 

3rule , 
4rule  

3 2x , 
4x , 

5x  
2x , 

4x , 
5x  4x , 

7x , 1
5A , 

2
2A , 2

6A , 2y  
2x , 

3x , 
4x , 

5x , 

2rule  

4 1x , 
2x , 

4x  2x , 
4x , 

5x , 
9x , 

3y  

1x , 
2x , 

4x , 

2rule , 
3rule , 

3y  
2x , 

3rule , 4y  

Table 10. Simulation results 

WISCONSIN BREAST CANCER PROBLEM  

N 
R 

1 
2 

1 
3 

1 
4 

2 
2 

2 
3 

2 
4 

3 
2 

3 
3 

3 
4 

4 
2 

4 
3 

4 
4 

 

1x  v v - - v v - v - - v v 58 

2x  - - - - - - v v - v - - 25 

3x  v v v v v v v v v v - v 92 

4x  - - - - - - - - - - - v 8 

5x  - - v v - - v v v v - v 58 

6x  v v v v v v v v v v v v 100 

7x  v v v v v v v - v v v v 92 

8x  v v v v v v v v v v v v 100 

9x  - v v v v - v v v v v v 83 

 56 67 67 67 67 56 78 78 67 78 56 89 [%] 
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Fig. 9. Degree of parameter number reduction [%]  

for the Wisconsin Breast Cancer problem 
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Fig. 10. Degree of learning time reduction [%]  

for the Wisconsin Breast Cancer problem 
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Fig. 11. Degree of learning time reduction  

per a single parameter [%]  
for the Wisconsin Breast Cancer problem 

77..  FFiinnaall  rreemmaarrkkss  
In the paper a new method for designing flexible 
neuro-fuzzy systems has been presented. Our 
algorithm allows to find a compromise between 
accuracy and complexity of neuro-fuzzy systems. 
This leads to transparent fuzzy rules and improves 
interpretability of such systems. 
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Fig. 12. Percentage of neuro-fuzzy systems having 

a particular input (attribute) after the reduction 
process for the Wisconsin Breast Cancer problem 
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Fig. 13. Percentage of inputs (attributes) 

corresponding to a particular neuro-fuzzy system 
after the reduction process  

for the Wisconsin Breast Cancer problem 
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