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Abstract: - QRS and ventricular beat detection is a basic procedure for electrocardiogram (ECG) processing 
and analysis. Large variety of methods have been proposed and used, featuring high percentages of correct 
detection. Nevertheless, the problem remains open especially with respect to higher detection accuracy in 
noisy ECGs. LabVIEW ( Laboratory Virtual Instrument Engineering Workbench) is a graphical programming 
language that uses icons instead of lines of text to create programs.  We developed in LabVIEW the filtering 
for removal of artifacts in biomedical signals and the Pan-Tompkins algorithm. We have investigated 
problems posed by artifact, noise and interference of various forms in the acquisition and analysis of several 
biomedical signals. We have also established links between the characteristics of certain epochs in a number 
of biomedical signals and the corresponding physiological or pathological events in the biomedical systems of 
concern. Event detection is an important step that is required before we may attempt to analyze the 
corresponding waves in more detail.  
 
Key-Words: - biomedical signal, database, electrocardiogram ECG, artifact, noise, graphical programming 
language LabVIEW, filtering, notch filter, event detection, Pan-Tompkins algorithm.  
 
1. Introduction 
   Biomedical signals are fundamental observations 
for analyzing the body function and for diagnosing a 
wide spectrum of diseases.  
   The problems caused by artifacts in biomedical 
signals are vast in scope and variety; their potential 
for degrading the performance of the most 
sophisticated signal processing algorithms is high. 
    An ECG signal [1] can be disturbed by a high-
frequency noise. The noise could be due to the 
instrumentation amplifiers, the recording system, 
pickup of ambient electromagnetic signals by the 
cables. The signal illustrated has also been corrupted 
by power-line interference at 60Hz and its 
harmonics, which may also be considered as a part 
of high-frequency noise relative to the low-
frequency nature of the ECG signal. 
    Low-frequency artifacts and base-line drift may 
be caused in chest-lead ECG signals by coughing or 
breathing with large movement of the chest. Poor 
contact and polarization of the electrodes may also 
cause low-frequency artifacts. Base line drift may 
sometimes be caused by variations in temperature 
and bias in the instrumentation and amplifiers as 
well. 
   The most commonly encountered periodic artifact 
in biomedical signals is the power-line interference 

at 50Hz or 60Hz. If the power-line waveform is not 
a pure sinusoid due to distortions or clipping, 
harmonics of the fundamental frequency could also 
appear. Harmonics will also appear if the 
interference is a periodic waveform that is not a 
sinusoid. Power-line interference may be difficult to 
detect visually in signals being non-specific 
waveforms; however, the interference is easily 
visible if present on well-defined signal waveforms 
such as the ECG or carotid pulse signals. In either 
case, the power spectrum of the signal should 
provide a clear indication of the presence of power-
line interference as an impulse or spike at 50Hz or 
60 Hz; harmonics will appear as additional spikes at 
integral multiples of the fundamental frequency. 
    If we have an ECG signal recorded from the 
abdomen of a pregnant woman and simultaneously a 
recorded ECG from the woman’s chest; and we 
compare these, we see that the abdominal ECG 
demonstrates multiple peaks corresponding to the 
maternal ECG as well as several others at weaker 
levels and higher repetition rate [1]. 
   The non-maternal QRS complexes represent the 
ECG of the fetus. Observe that the QRS complex 
shapes of the maternal ECG from the chest and 
abdominal leads have different shapes due to the 
projection of the cardiac electrical vector onto 
different axes. 
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     The QRS complexes and ventricular beats in an 
electrocardiogram represent the depolarization 
phenomenon of the ventricles and yield useful 
information about their behavior. Beat detection is a 
procedure preceeding any kind of ECG processing 
and analysis. For morphological analysis this is the 
reference for detection of other ECG waves and 
parameter measurements. Rhythm analysis requires 
classification of QRS and other ventricular beat 
complexes as normal and abnormal. Real-time 
ventricular beat detection is essential for monitoring 
of patients in critical heart condition. 
 
 
2. Filtering for Removal of Artifacts 
    Information provided by bioelectric signals are 
generally time-varying, nonstationary, sometimes 
transient, and usually corrupted by noise.  Fourier 
transform has been the unique tool to face such 
situations, even if the discrepancy between 
theoretical considerations and signal properties has 
been emphasized for a long time. These issues can 
be now nicely addressed by time-scale and time-
frequency analysis. 
   One of the major areas where new insights can be 
expected is the cardiovascular domain. For diagnosis 
purpose, the noninvasive electrocardiogram ECG is 
of great value in clinical practice. The ECG is 
composed of a set of waveforms resulting from 
atrial and ventricular depolarization and 
repolarization. The first step towards ECG analysis 
is the inspection of P, QRS and T waves Fig.1; each 
one of these elementary components is a series of 
onset, offset, peak, valley and inflection points. 
Ideally, the waves exhibit local symmetry properties 
with respect to a particular point, peak and inflection 
points locations of the considered wave. Based on 
these properties, one can extract significant points to 
study the wave shapes and heart rate variability. 

 
Fig.1. Example of a normal ECG beat. 
 
   In our paper we have gained an understanding of a 
few sources of artifacts in biomedical signals and 

their nature and we are prepared to look at specific 
problems and develop effective filtering techniques 
to solve them. The proposed solution provides the 
details of an appropriate filtering technique. Certain 
types of noise may be filtered directly in the time 
domain using signal processing techniques or digital 
filters. An advantage of time-domain filtering is that 
spectral characterization of the signal and noise may 
not be required. Linear filters fail to perform when 
the signal and noise spectra overlap. Synchronized 
signal averaging can separate a repetitive signal 
from noise without distorting the signal [1]. A 
synchronized averaging is a type of ensemble 
averaging. An algorithmic description of 
synchronized averaging is as follows: a) obtain a 
number of realizations of the signal or event of 
interest; b) determine a reference point for each 
realization of the signal; c) extract parts of the signal 
corresponding to the events and add them to the 
buffer, it is possible that the different parts are of 
different durations; d) divide the result in the buffer 
by the number of events added. 
   Let ( )nyk  represent one realization of a signal, 
with k = 1,2,…, L representing the ensemble index, 
and n = 1,2,…, N representing the time-sample 
index. The observed signal is 

( ) ( ) ( ),nnxny kkk η+=   (1) 

where ( )nxk represents the original uncorrupted 
signal and ( )nkη represents the noise in the kth copy 
of the observed signal. If for each instant of time n 
we add L copies  of the signal, we get 
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tend to zero as L increases, with a variance of 
.2

ησM The RMS value of the noise in the averaged 

signal is .ησM Thus the SNR of the signal will 

increase by a factor of 
L

L or L . The larger the 

number of epochs or realizations that are averaged, 
the better will be the SNR of the result.  
   Fig.2 illustrates two ECG cycles extracted using 
the trigger points obtained by thresholding the cross-
correlation function [1], as well as the result of 
averaging the first 11 cycles in the signal. 
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Fig.2. The upper two traces - two cycles of the ECG 
extracted from an ECG signal with noise. The 
bottom trace – the result of synchronized averaging 
of 11 cycles from the same ECG signal. 
 
   Structured noise such as power-line interference 
may be suppressed by synchronized averaging if the 
phase of the interference in each realization is 
different. 
   When an ensemble of several realizations of an 
event is not available, synchronized averaging will 
not be possible. In this case we consider temporal 
averaging for noise removal, with the assumption 
that the processes involved are ergodic, that is, 
temporal statistics may be used instead of ensemble 
statistics. 
   The biomedical signals, that have been processed , 
are from Online Biomedical Signals Databases: 
ftp://ftp.ieee.org/uploads/press/rangayyan, 
www.ecgdatabase.com, www.ecglibrary.com.  
 
2.1 High frequency noise in the ECG. 
   The Butterworth filter is perhaps the most 
commonly used frequency domain filter due to its 
simplicity and the property of a maximally flat 
magnitude response in the pass-band [2]. 
   The basic Butterworth lowpass filter function is: 

( ) aN
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Ω
Ω

+

=Ω   (3) 

where aH  is the frequency response of the analog 
filter and cΩ  is the cutoff frequency  in radians/s 
and N is the order of the filter. As the order N  
increases, the filter response becomes more flat in 
the pass-band, and the transition to the stop-band 
becomes faster or sharper. 

   Changing to the Laplace variable s, we get: 
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   Using the bilinear transformation, that means, by 
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simplified transfer function: 

( ) ( )
∑
=

−

−+
= N

k
k

k

N

za

zGzH

0

1' 1   (5) 

where ak , k=0,1,2,…,N, are the filter coefficients 
and G’ is the gain factor at z=1. The filter is now in 
the familiar form of an IIR filter. A form of 
realization of a generic IIR filter is illustrated as 
signal-flow diagram in Fig.3. 
 

x(n) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.3.Signal-flow diagram of a direct realization of a
generic infinite impulse response filter. 

 
Following LabVIEW program based on the IIR filter 
for eliminating the high frequency noises was 
realized and the graphs concerning the input signal 
and the output signal processed with the IIR filter 
are presented in Fig.4. 
 
2.2 Low frequency noise in the ECG 
       Low-frequency artifacts and base-line drift may 
be caused in chest-lead ECG signals by coughing or 
breathing with large movement of the chest. Poor 
contact and polarization of the electrodes may also 
cause low-frequency artifacts. Base line drift may 
sometimes be caused by variations in temperature 
and bias in the instrumentation and amplifiers as 
well.  
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Fig.4.LabVIEW program based on IIR filter, high 
frequency noise signal upper graph and filtered  
signal lower graph (x-samples, y-amplitude). 

 
The drawback of the first-order difference and the 
three-point central-difference operators [1] lies in 
the fact that their magnitude responses remain low 
for a significant range of frequencies well beyond 
the band related to base-line wander. We would like 
to maintain the levels of the components present in 
the signal beyond about 0.5-1Hz, that is, we would 
like the gain of the filter to be close to unity after 
about 0.5Hz. The gain of a filter at specific 
frequencies may be boosted by placing poles at 
related locations around the unit circle in the z-
plane. For the sake of stability of the filter, the poles 
should be placed within the unit circle. Since we are 
interested in maintaining a high gain at very low 
frequencies, we could place a pole on the real axis 
(zero frequency), at say z=0.995 [2]. The transfer 
function of the modified first-order difference filter 
is then 

]
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1

−

−

−

−
=
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The time-domain input-output relationship is given 
as: 

( ) ( ) ( )[ ] ( )1995,011
−+−−= nynxnx

T
ny  (8) 

LabVIEW program and the obtained waveforms are 
the following, represented in Fig.5: 

Fig.5.LabVIEW program based on the derivative 
operator, low frequency noise signal upper graph 
and filtered signal lower graph (x-samples,  
y-amplitude). 

 
2.3 Power-line interference in ECG signals 
   The simplest method to remove periodic artifacts 
is to compute the Fourier transform of the signal, 
delete the undesired components from the spectrum, 
and then compute the inverse Fourier transform. The 
undesired components could be set to zero, or better, 
to the average level of the signal components over a 
few frequency samples around the component that is 
to be removed. 
   Periodic interference may also be removed by 
notch filters [1] with  zeros on the unit circle in the 
z-domain at the specific frequencies to be rejected. 
Applying the LabVIEW program we obtain Fig.5: 
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Fig. 5. Random noise elimination using notch 
filter and Hanning filter.  

 
3   The Pan-Tompkins algorithm for 
QRS detection 
   Pan and Tompkins [3], [4] proposed a real-time 
QRS detection algorithm based on analysis of the 
slope, amplitude and width of QRS complexes. The 
algorithm includes a series of filters and methods 
that perform lowpass, highpass, derivative, squaring, 
integration, adaptive thresholding and search 
procedures Fig.6. In this paper we implemented the 
Pan-Tompkins algorithm for QRS detection [1] in      
LabVIEW. 

Fig.6. Block diagram of the Pan-Tompkins  
Algorithm for QRS detection. 

 
   Lowpass filter: The recursive lowpass filter used 
in the Pan-Tompkins algorithm has integer 
coefficients for reducing computational complexity, 
with the transfer function defined as: 
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The output y(n) is related to the input x(n) as: 
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1
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With the sampling rate being 200 Hz, the filter has a 
rather low cutoff frequency of fc=11Hz, and 
introduces a delay of 5 samples or 24ms. The filter 
provides an attenuation greater than 35dB at 60Hz, 
and effectively supresses power-line interference, if 
present. 
   Highpass filter: The highpass filter used in the 
algorithm is implemented as an allpass filter minus a 
lowpass filter. The lowpass component has the 
transfer function 

1

32

1
1)(

−

−

−

−
=

z
zzHlp   (11) 

the input-output relationship is: 
( ) ( ) ( ) ( ).321 −−+−= nxnxnyny  (12) 

The transfer function Hhp(z) of the highpass filter is 
specified as: 

( ) ( ).
32
116 zHzzH lphp −= −

 (13) 

The output p(n) of the highpass filter is given by the 
difference equation 

( ) ( ) ( ) ( ) ( )[ ],321
32
116 −−+−−−= nxnxnynxnp  (14) 

where x(n) and y(n) being related as in (12). The 
highpass filter has a cutoff frequency of 5Hz and 
introduces a delay of 80ms. 
   Derivative operator: The derivative operation 
used by Pan and Tompkins is specified as: 

( ) ( ) ( ) ( ) ( )[ ],42312
8
1

−−−−−+= nxnxnxnxny (15) 

and approximates the ideal 
dt
d operator up to 30 Hz. 

The derivative procedure suppresses the low-
frequency components of the P and T waves, and 
provides a large gain to the high-frequency 
components arising from the high slopes of the QRS 
complex. 
   Squaring: The squaring operation makes the result 
positive and emphasizes large differences resulting 
from QRS complexes; the small differences arising 
from P and T waves are suppressed. The high-
frequency components in the signal related to the 
QRS complex are further enhanced. 
   Integration: As observed in the previous 
subsection, the output of a derivative-based 
operation will exhibit multiple peaks within the 
duration of a single QRS complex. The Pan-
Tompkins algorithm performs smoothing of the 

1 
 

2 3 4 

Samples 

Signal with 60Hz noise 

Processed signal 
with notch filter 

Averaged signal 
with Hanning 
filter

1: Band pass filter 2: Differentiator 

3: Squaring operation 4: Moving-window integrator 
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output of the preceding operations through a 
moving-window integration filter as: 

( ) ( )( ) ( )( ) ( )[ ]nxNnxNnx
N

ny ++−−+−−= ...211
.(16) 

The choice of the window width N is to be made 
with the following considerations: too large a value 
will result in the outputs due to the QRS and T 
waves being merged, whereas too small a value 
could yield several peaks for a single QRS. A 
window width of N=30 was found to be suitable for 
fs = 200Hz. 
   Adaptive thresholding: The thresholding 
procedure in the Pan-Tompkins algorithm adapts to 
changes in the ECG signal by computing running 
estimates of signal and noise peaks. A peak is said to 
be detected whenever the final output changes 
direction within a specified interval. SPKI represents 
the peak level that the algorithm has learned to be 
that corresponding to QRS peaks and NPKI 
represents the peak level related to non-QRS 
events.THRESHOLDI1 and THRESHOLDI2 are two 
thresholds used to categorize peaks detected as 
signal or noise. Every new peak detected is 
categorized as a signal peak or a noise peak. If a 
peak exceeds THRESHOLDI1 during the first step 
of analysis, it is classified as a QRS peak. Using the 
searchback technique the peak should be above 
THRESHOLDI2 to be called a QRS. The peak levels 
and thresholds are updated after each peak is 
detected and classified as: 
SPKI = 0.125PEAKI + 0.875SPKI  if PEAKI is a 
signal peak; 
NPKI = 0.125PEAKI + 0.875NPKI  if PEAKI is a 
noise peak; 
THRESHOLDI1=NPKI + 0.25(SPKI - NPKI); 
THRESHOLDI2=0.5THRESHOLD I1     
The updating formula for SPKI is changed to 
SPKI = 0.25PEAKI + 0.75SPKI 
if a QRS is detected in the searchback procedure [1], 
[3], [4] using THRESHOLDI2. 
 

 
Fig.7.Upper plot-Schematic ECG signal;Lower plot
Output of the moving-window integrator. 

 
Fig.7 illustrates the effect of the window width on 
the output of the integrator and its relationship to the 
QRS width. 
 

4. LabVIEW Pan-Tompkins algorithm 
implementation 
After implementing the upper equations in 
LabVIEW we obtain following results Fig.8, Fig.9. 
 

Fig.8. Pan-Tompkins algorithm front panel. 

Fig.9. Results of the Pan-Tompkins algorithm. 
a) two cycles of a filtered ECG; 
b) output after ECG squaring; 
c) the result of the final integrator.  

 
4.  Conclusion 
   The results obtained using LabVIEW for the 
implementation of the Pan-Tompkins algorithm is 
very fast and useful, because the ECG can be easily 
read and saved in a file and the filtering, squaring, 
integrating, applying the moving window can be 
accurately done. The peak detection is very 
important in diagnostic decision . 
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