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Abstract: We present in this paper some new and efficient algorithms for the tracing and recognition of cell phases
for high-content screening. The conceptual frameworks are based on the morphological structures of cells where a
series of morphological structural points are established. Furthermore, we address the issue of touching cells and
then propose morphological techniques for cell separation and reconstruction.
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1 Introduction

The tracing and recognition of cell phases using flu-
orescence microscopy images play an important role
for any automated high-content screening that helps
scientists to better understand the complex process
of cell division or mitosis [1]-[4]. High content
screening concerns with the tracking of cell cycle
progression (interphase, prophase, metaphase, and
telophase), which can be identified by measuring nu-
clear changes. The most difficult task of such analy-
sis is finding different stages during cell mitosis [5]-
[7]. A typical nuclear migration during cell division
is shown in Fig. 1. We discuss in this paper some
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Figure 1. Part sample of one cell-cycle screening
(frame time:15 minutes).

novel algorithms for the tracing and recognition of
cell phases uisng several mophological models. We
also address effective methods for separting and re-
constructing touching cells. The rest of this paper is
organized as follows. Section 2 describes the prepro-
cessing of cell images. Section 3 presents morpholog-
ical models for cell tracing and recognition. Section 4

discusses the separation and reconstruction of touch-
ing cells. Finally, Section 4 concludes the findings of
our work.

2 Preprocessing of Cell Images
2.1 Smooth following and linearization

The Ostu’s method [8] is used to separate binary cell
images in cell-cycle screening and shown in Fig. 2.
The description of image contour is important for the
shape analysis and recognition of image. Many meth-
ods and algorithms are developed for the description
of contours in the past [9] [10]. We introduce some ef-
ficient preprocessing algorithms. The chain code set
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Figure 2: Binarization of images in Fig. 1.

of contour & is represented as:
Cr = {co,c1.--Ciy oCp—1,¢n } (1)

where ¢ is the index of the contour pixels. The differ-
ence code, d;, is defined as:

d; = ciy1 — ;. 2)



In smooth followed contours, |d;| equals 0 or 1 [11].
The smoothed contour can be converted to a set of
lines which consist of ordered pixels. Suppose that
the direction chain code set of the smoothed contour

is
{d"li] (i=0,..(nj" 1))}, (3)

where In is the In-th line of a smoothed contour and
ni™ is the number of points of the In-th line. A lin-
earized line has the following property: [11]
if
dij = d"i] =g (i =0,..k—1),(j =0,..k—1),
(4)
then

|dij | <1 (i=0,.k—1),(j =0,.k —1). (5)

Therefore, a linearized line contains only two ele-
ments whose chain codes meet Equation (5). Two el-
ement codes of the linearized line are represented by
cdirl and cdir2 respectively [11]. The contours in
Fig. 1 are smoothly followed, linearized, and shown
in Fig. 3 where the spurious points in contours are re-
moved and character Y™ is the first point of each lin-
earized line.
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Figure 3: Smooth following and linearization of con-
tours (bottom-left cell in the cell-cycle screening) (re-
fer to Fig. 2).

2.2 Structural points of smoothed contours

The structural points are defined and detected based
on the structure patterns of element codes of two
lines [11]. Assume that line[ln] is the current line
and that line[ln — 1] is the previous line.

Definition 1. The convex point in the direction of
code 4 (represented with the character “A”)

If the element codes 3, 4 and 5 occur successively as a
group of neighborhood linearized lines, then one con-
vex point can be found as follows:

if cdirl of line[ln] is code 4, cdir2 is code 5 and the
direction chain code of the last pixel of line[ln — 1] is
code 3, then the first pixel of the current line line[in]
is a convex point which is represented with “A”.
Definition 2. The concave point in the direction of
code 4 (represented with the character “m”)
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If the element codes 5, 4 and 3 occur successively as a
group of neighborhood linearized lines, then one con-
cave point can be found as follows:

if cdirl of line[ln] is code 4, cdir2 is code 3 and the
direction chain code of the last pixel of line[ln — 1] is
code 5, then the first pixel of the current line, line[in],
is a concave point which is represented with “m”.
Similar to Definitions 1-2, other structural points, con-
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Figure 4. Structural patterns of structural points.

vex points “v”, “[’, *)”, “F”, “0”, “T”, “s” and con-
cave points “$”, “1”, “(”, “f”, O “t” and “S” can
be defined, found and shown in Fig. 4 respectively.
These structural points describe the convex or con-
cave change in different chain code directions along
the contour, and they can therefore be used to repre-
sent the morphological structure of contour regions.
The series of structural points of cell images (see
Fig. 3) can be found and shown in Fig. 5 based on
the above algorithm For the outer contour in Fig. 5(1),
the series of structural points is:

“AT = BT = [ T = VT Yo" )T = T
It is clear that the contour shape is convex polygon,
where it can be approximately defined as a ellipse.
For the outer contour in Fig. 5(7), the series of struc-
tural points is:

“A” = “F” = " — “s”(convex) — “S” — “1" —
“f” (concave) — “F’— “["— “s” = “v’'— “0"— )"
(convex) — “(” (concave) — “)”"— “T” (convex).

It is clear, that the above contour shape consist of of
two pairs of convex and concave change.



.........

.......

@ (VZ> ® )

..................

) ®) @) ®

Figure 5: Cell morphological structures of different
phases (refer to Fig. 3).

3 Tracing and recognition of differ-
ent cell phases

3.1 Morphological model of cells

In order to trace progresses of cells, it is necessary to
recognize the cell shape of different cell phases. There
mainly are two classes of cell shapes, ellipse and bar-
bell, for one cell in our cell-cycle screening. The el-
lipse shapes can be three types, skew, horizontal and
vertical. Some recognition models of cell shapes can
be described as following based on their morphologi-
cal structures:

If a cell shape is an ellipse, there are no concave struc-
tural points on the outer contour of the cell contour.
Furthermore, two models of ellipse can be described
as following.

Morphological model 1: Ellipse shapes e 1 2 5) and
€(6,2,1,5)

For these shapes, the number of group of codes,
(codes 5, 1, 2 and 6), is largest.

Let c5,6,1,2 be the total number of codes 5, 6, 1 and
2, ¢y be the total number of all codes, cs5 1 be the total
number of codes 5 and 1, and cg 2 be the total num-
ber of codes 6 and 2, on the outer contour of the cell
image respectively. If (1) the above Condition is met;
(2) its outer contour mainly consists of chain codes 5,
6, 1and 2 (cs6,1,2 > 3cp); (3) the number of chain
codes 5 and 1 is more than that of chain codes 6 and 2
(c5,1 > cg,2), then the cell image shape is recognized
as the shape e(s 1 2,6, Otherwise (c51 < cg,2) the cell
image is recognized as the shape e 2,1 5)-

In this model, the cell image shape, e(s 1 2.6), IS @ Skew
ellipse in the direction of code 5 or 1, and the cell im-
age shape, e 2.1,5), is a vertical ellipse mainly.
Morphological model 2: Ellipse shapes e(7 3 9.4y and
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€(0,4,3,7)

For these shapes, the number of group of codes,
(codes 7, 3, 0 and 4), is largest.

Let c70,3,4 be the total number of codes 7, 0, 3 and
4, c¢; be the total number of all codes, ¢ 4 be the total
number of codes 0 and 4, and c7 3 be the total num-
ber of codes 7 and 3, on the outer contour of the cell
image respectively. If (1) the above Condition is met;
(2) its outer contour mainly consists of chain codes 7,
0,3 and 4 (cro3.4 > 2cp); (3) the number of chain
codes 7 and 3 is more than that of chain codes 0 and 4
(c7,3 > co,4), then the cell image is recognized as the
ellipse shape e(7 3,0 4y, Otherwise (c7,3 < co,4) the cell
image is recognized as the shape e(g,4,3,7)-

In this model, the cell image shape, e(7 30 .4), IS con-
sidered as a skew ellipse in the direction of code 7 or
3, and the cell image shape, e 4,7,3), a horizontal el-
lipse.

Morphological model 3: Ellipse shapes e 27,3y and
€(7,3,2,6)"

For these shapes, the number of group of codes,
(codes 6, 2, 7 and 3), is largest.

Let cg 72,3 be the total number of codes 6, 7, 2 and
3, ¢ be the total number of all codes, cg » be the total
number of codes 6 and 2, and c7 3 be the total num-
ber of codes 7 and 3, on the outer contour of the cell
image respectively. If (1) the above condition is met;
(2) its outer contour mainly consists of chain codes
6, 7, 2 and 3 (c6,723 > 3c); (3) the number of
chain codes 6 and 2 is more than that of chain codes
7 and 3 (c62 > cr,3), then the adjunctive segment
is recognized as the ellipse shape e 2,7 3), Otherwise
(cs,2 < c7.3) the cell image is recognized as the shape
€(7,3,2,6)"

Based on the above recognition models, the cell im-
age in Fig. 5(1) is recognized as shape e 27,3), the
cell images in Figs. 5(2-3) are recognized as shape
e(6,2,1,5) and the cell images in Figs. 5(5-6) is recog-
nized as ellipse shape e(q 4,3 7y respectively.
Morphological model 4: Barbell shapes.

If (1) there are two concave structural changes; (2)
there is one pair of corresponding concave structural
points, ”A” and ”$” (horizontal), ”]” and ”(” (vertical),
77 and ”O” (skew), or ”t” and ”S” (skew), then cell
image contour can be recognized as the barbell shape.
The cell image contour in Fig. 5(7) can be recognized
as a barbell shape, and its pair of corresponding con-
cave structural points are structural points ”]” and ”(”.
Also, other morphological structures of cell images
can be described.

3.2 Cdl phases

The different phases of cell are determined based on
the shape and size of the cell image in the current



frame and those in its neighboring frames of the cell-
screening. As the shape ellipse, its shape change is
mainly based on the rate between major and minor
axes, and area size of cell image.

Basically, if there are concave changes in the cell im-
age and its size is big, then the cell image is touching
cell image. Firstly, if the cell image’s size is not too
large, then different cell phases can be traced and rec-
ognized as follows:

(1) if (a) the cell shape is an ellipse; (b) the area size
of cell image is large enough (threshold can be found
from statistical analysis of cell-screening), then the
cell is a normal changing one (metaphase). In this
case, there are two phases:(1.1) if its changing trend is
that the rate between major and minor axes of the cell
image is decreased with time (compare these features
between two neighboring frames) , then the phase is
changing from prophase to metaphase; (1.2) other-
wise from metaphase to telophase.

(2) if the rate between major and minor axes of the
cell image is large enough (threshold can be found
from statistical analysis of cell-screening), there are
two phases: (2.1) if there are two new small cells at
tracing location, then the cell has split; (2.2) other-
wise the cell will be split soon (telophase).

(3) if the cell shapes are a barbell shape and the area
size of cell image is not big, then then the cell will be
split (telophase).

(4) if (a) the cell shape is an ellipse; (b) the area
size of cell image is small enough, then the cell is a
newly changing one, and its changing trend is that the
area size of cell image is increased with time (com-
pare these features between two neighboring frames)
(prophase).

(5) if the cell shapes and area are not changed for long
time, it should be dead cell.

Based on the above analysis, the cells in Figs. 5(1-
5) are at metaphase, the cells in Figs. 5(6-7) are
at telophase soon, and the cells in Fig. 5(8) are at
prophase. In this way, cell-screening can be traced
and recognized dynamically and automatically.

4 Separation and reconstruction of
touching cells

A key problem for identifying the size and shape of
the cell nuclei is that they are touching each other .
For example, the images of two frames are shown in
Fig. 6. We can see that the size and shape of some
cells cannot be found because these cell images are
touched. Therefore, we have to find which cell images
are touched, how many cell images are touched, where
these separation points, how the touched cell image
are separated and reconstructed.

Proceedings of the 2007 WSEAS Int. Conference on Cellular & Molecular Biology - Biophysics & Bioengineering, Athens, Greece, August 26-28, 2007 39

Figure 6: Binary images of two frames in one cell-
cycle screening (frame time:15 minutes).

4.1 Morphological structures of touching
cell images

Based on the prior knowledge, the cell shape of cell-
cycle screening images can approximate as an ellipse
before it is divided. Therefore, if two or more cells
are touched, there are is one concave structural point
at least on its outer contour. Also, its size is larger than
that of one cell image as touching cell image consists
of two or more cells. There are nine groups of touch-
ing cell images in Fig. 6(1). Three groups of touching
cell images and one telophase cell image in Fig. 6 are
shown in Fig. 7. They can be smoothly followed, lin-
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Figure 7. Binarization images of three touching cell
images and one telophase cell image.

earized and extracted structural points, and shown in
Fig. 8 based on preprocessing algorithms. Based on
the definition of structural points, one concave point
means a concave change in the direction of one chain
code on the contour. Let a series of concave structural
points on the outer contour of touching cell images is

See = {Scc(o)a Scc(l)---scc(i)a --'Scc(n - 1)’ Scc(’l’b)}(6)

where s..(z) is the structural point number of the 4-
th concave structural point on the contour, and there
are m concave structural points on the contour. It is
clear that s..(7) < sc(¢ + 1). In fact, one concave
change on the contour may consists of several closest
concave structural points. For example, if there exists
Sec(i+1) —58ec(i) = 1and see(t+2) —sce(i+1) =1,
then that means one concave change consists of three
concave structural points, s..(z), sec(i+1) and s..(i+
2). In this case, these three concave structural points
should be merged into one group of concave structural
points. After the above merging processing for S, a
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Figure 8: The extracting structural points of the im-
ages in Figs. 8(1-4).

series of groups of concave structural points (S.g),

Scg = {5¢g(0), 8¢g(1)---8¢g (%), ---Scg(k — 1), S¢q(K) }(7)

can be found, where % is the number of groups and
k < n. For example, nine concave structural points
in Fig. 8(2) are merged into three groups of con-
cave structural points. The morphological patterns
of touching cell images can be determined based on
the number of groups of concave structural points. If
k =1ork = 2, two cells are touched. If k£ = 3, three
cells are touched. If & = 4, four cells are touched.

4.2 Separation pointsof touching cell images

The method of searching separation points can be de-
scribed as follows.

Casel(k=1):

If & = 1), there is one group of concave points,
5¢9(0). Suppose s.4(0) contains p concave points,
5¢90(0), ...Scq0(p — 1)p < 4. For each concave point,
find its match convex structural points which are de-
fined as its corresponding convex structural points in
the approximate reverse direction of chain code. For
example, if s.40(0) is concave structural point “A”,
then its match convex structural points are “s”, “v”
and “0”. Let the number of the corresponding match
convex structural points for all s.40(0), ...scq0(p) be
q, and they are represented as s¢,(0),...8c (g — 1).
We can determine separation points which make min-
imum distance between one pair of one concave struc-
tural points in {sc40(0),...scq0(p)} and one convex

structural point in {s¢,(0), ...scy (g — 1) }. That is

{cho(m)7 sce(n)} = mi”i{‘scgo(i)ascc(j)ﬁ <p,J<gq},

(8)
where sqq0(m) and s..(n) are selected separation
points.

Case 2 (k= 2):

If Kk = 2), there are two groups of concave
points, s.g(0) and s.4(1). Suppose the number
of concave structural points in s.(0) is py, and
in sc(1) is py respectively. In this case, we
can determine separation points which make min-
imum distance between one pair of one concave
structural point in {s¢g0(0),...scq0(po)} and one in
{chl (O), ---Segl (pl)}. That is

{cho(m), chl(n)} = m’mi{|3cg0(i)> Scgl (J)'Z < po,J < pl}a

9)
where scg0(m) and scq1(n) are selected separation
points.

Case 3 (k > 2):

If & > 2), there are more than two groups of concave
points, s¢q(0) ... scg(l)l > 2. In this case, we can
determine each pair of separation points which make
minimum distance between each pair of one con-
cave structural point in {s¢gz(0), ...Scgz(pz) } and one
iN {5¢gy(0), ---8cq1 (Py) }, Where {scgz(0), -.-Scgaz (Pz) }
and {s¢gy(0), -.-s¢q1(py)} are neighboring groups of
concave structural points. That is

{chx(m)a chy(n)} = miniﬂscgm(i)a chy(j)“ <Pz, J < py},

(10)
where s¢gq;(m) and s.q,(n) are selected separation
points. For example, if k£ = 3), there are three pairs of
groups of concave structural points, s.,(0) and s¢4(1),
Scg(1) and scq(2), and sq4(2) and s.4(0) respectively.
Based on the above algorithm, we can find all sep-
aration points of images in Figs. 8(1-4). We can
find related separation lines (see Figs. 8(1-4)) and the
coordinate data of related arcs which are shown in
Figs. 9(2,3), 10(2,3) and 11(2,3,4) based on these
separation points and series of points of the contour.
These contours of touching cell images are shown in
Figs. 9(1), 10(1) and 11(1). The cell image in Fig. 8(4)
is not touching based on the detection rule of the phase
telophase because it is a barbell shape and its area is
not big.

4.3 Reconstruction of touching cell images

We have found the coordinate data of all related arcs
which are separated based on the above algorithm. As
all cell shapes are approximately as an ellipse, touch-
ing cell images can be reconstructed based on these
separated arcs. The reconstruction method is direct
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Figure 9: The contour, separated arcs and recon-
structed ellipses of sample touching cell image 1.
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Figure 10: The contour, separated arcs and recon-
structed ellipses of sample touching cell image 2.

least square fitting of ellipses [12]. The the recon-
structed cell images are shown in Figs. 9(4,5), 10(4,5)
and 11(5,6,7) based on the coordinate data of sepa-
rated arcs respectively. These reconstructed cells can
be used for tracing and recognition of different cell
phases.

5 Conclusion

An efficient and new method has been developed
for tracing and recognition of cell-cycle screening
based on morphological structures. The morpholog-
ical structures of cells are described based structural
points. The different cell phases are determined in
terms of cell shape recognition, cell size between
neighboring frames of cell-screening. The touching
cell images are recognized, segmentation points are
detected, and separated cell images are reconstructed.
Our algorithms have has been used to process the cell
database which consists of 480 frames. Average di-
vision time is 1830 minuets (tracing the cell from
prophase to telophase). All phases of cells of the
database can be traced and recognized. Our method
is efficient and new because morphological structure
models of cell images are constructed, and these mod-
els simulate artificial intelligence.
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