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Abstract: - Protein folding and structure prediction at the all atom-level remain important grand-computational 
challenges. We review the development of algorithms and forcefields for predictive all atom folding simulations of 
proteins with up to sixty amino acids using an evolutionary stochastic optimization technique. We have implemented a 
master-client model which scales near perfectly from 64 to 4096 nodes. Using a PC cluster we fold the sixty-amino 
acid bacterial ribosomal protein L20 to near-native experimental conformations.  Starting from a completely extended 
conformation with 2048 nodes of the IBM BlueGene we predictively fold the fourty amino acid HIV accessory  protein 
in less then 24 hours.  
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1 Introduction 

 
Protein folding and structure prediction have been 
among the important grand computational challenges 
for more than a decade. In addition to obvious 
applications in biology the life sciences and medicine 
success for protein simulation strategies also impact 
the materials and an increasingly the nano-sciences.  
Among these challenges it is important to develop 
methods that are capable of folding proteins and their 
complexes from completely unbiased extended 
conformations to the biologically relevant native 
structure. This problem is difficult to sort of by the 
presently most accurate simulation techniques, which 
follow the evolution of the protein in its environment 
in a three-time.  Since the microscopic simulation step 
in such molecular-mechanics methods is off the order 
of femtoseconds, while the folding or asociation 
process takes place on the order of milliseconds, such 
simulations remain limited in the system size by the 
large computational effort required[1]. It has been a 
great hope for almost a decade that emerging 
massively parallel computers the architectures, which 
are available now  at the teraflop scale, and which will 

reach the teraflop skated in the foreseeable future, we 
be able to contribute to the solution of these problems. 
Unfortunately kinetic methods face enormous 
difficulties in the exploitation of the full 
computational power of these architectures, because 
they impose a sequence of steps onto the simulation 
process, which must be completed one after the other. 
The parallelization of the energy and force evaluation 
of a single time-slice of the simulation requires a very 
high communication bandwidth when distributed 
across thousands of nodes.  This approach alone is 
therefore unlikely to fully utilize many thousand 
processors of emerging petaflop-architectures, let 
alone grid-applications with hundreds of thousands of 
processors.  
In a fundamentally different approach we have 
developed models[2] and algorithms[3] which permit 
reproducible and predictive folding of small proteins 
from random initial conformations using free-energy 
forcefields. According to Anfinsen’s thermodynamic 
hypothesis  many proteins are in thermodynamic 
equilibrium with their environment under 
physiological conditions. Their unique three-
dimensional native conformation then corresponds to 
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the global optimum of a suitably free-energy model. 
The free-energy model captures the internal energy of 
a given backbone conformation with the associated 
solvent and side-chain entropy via an implicit solvent 
model. Comparing just individual backbone 
conformations these models assess the relative 
stability of conformations  (structure prediction). In 
combination with thermodynamic simulation methods 
(Monte-Carlo or parallel tempering)[4], this approach 
generates continuous folding trajectories to the native 
ensemble.  
Stochastic optimization methods[5], rather than 
kinetic simulation, can be used to search the protein 
free energy landscape in a fictitious dynamical 
process. Such methods explore the protein free-
energy landscape orders of magnitude faster than 
kinetic simulations by accelerating the traversal of 
transition states  the directed construction of downhill 
moves on the free-energy surface, the exploitation of 
memory effects or a combination of such methods. 
Obviously this approach can be generalized to use not 
just one, but several concurrent dynamical processes 
to speed the simulation further, but few scalable 
simulation schemes are presently available. 
The development of algorithms that can concurrently 
employ thousands of such dynamical processes to 
work in concert to speed the folding simulation 
remains a challenge, but holds the prospect to make 
predictive all-atom folding simulations in a matter of 
days a reality.  
The development of such methods is no trivial task 
for a simple reason: if the total computational effort 
(number of function evaluations N) is conserved, 

while the number of nodes ( pn ) is increased, each 
process explores a smaller and smaller region of the 
conformational space. If the search problem is 
exponentially complex, as protein folding is believed 
to be [24], such local search methods revert to an 

enumerative search, which must fail. It is only the 
’dynamical memory’ generated in thermodynamic 
methods such as simulated annealing [20], that permit 
the approximate solution of the search problem in 
polynomial time. Thus, massively parallel search 
strategies can only succeed if the processes exchange 
information.  
Here we review applications of a recently developed 
an evolutionary algorithm, which generalized the 
basin hopping or Monte-Carlo with minimization[6], 
method to many concurrent simulations. Using this 
approach we could fold the sixty amino acid bacterial 
ribosomal protein to its native ensemble[7, 8].  
 

2 Methods 
 

2.1. Forcefield  
We have parameterized an all-atom free-energy 
forcefield for proteins (PFF01), which is based on the 
fundamental biophysical interactions that govern the 
folding process. We have also developed, or 
specifically adapted, efficient stochastic optimization 
methods[9] (stochastic tunneling, basin hopping, 
parallel tempering, evolutionary algorithms) to 
simulate the protein folding process. Forcefield and 
simulation methods are implemented in the POEM 
(Protein Optimization with free-Energy Methods) 
program package. We could demonstrate that the 
free-energy approach is several orders of magnitude 
faster than the direct simulation of the folding 
pathway, but nevertheless permits the full 
characterization of the free-energy surface that 
characterizes the folding process according to the 
prevailing funnel-paradigm for protein folding.  
 
2.2. Optimization Method 
Most stochastic optimization methods map is such of 
the complex potential energy landscape of the 

 
 
Figure 1: Overlay of the folded and the experimental conformation of the bacterial ribosomal protein L20 (left) and the HIV 

accesory protein (right) 
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problem onto a fictitious dynamical process that is 
guided by its inherent dynamics toward the low 
energy region, and ultimately the global optimum, of 
the landscape.  In many  
prior simulations the basin hopping technique proved 
to be a reliable workhorse for many complex 
optimization problems[10, 11], including protein 
folding[12], but employs only one dynamical process. 
This method simplifies the original landscape by 
replacing the energy of each conformation with the 
energy of a nearby local minimum. This replacement 
eliminates high energy barriers in the stochastic 
search that are responsible for the freezing problem in 
simulated annealing. In order to navigate the complex 
protein landscape we use a simulated annealing (SA) 
process for the minimization step[13]. Within each 
SA simulation, new configurations are accepted 
according to the Metropolis criterion, while the 
temperature is decreased geometrically from its 
starting to the final value. The starting temperature 
and cycle length determine how far the annealing step 
can deviate from its starting conformation. The final 
temperature must be small compared to typical 
energy differences between competing metastable 
conformations, to ensure convergence to a local 
minimum.  
We have generalized this method to a population of P 
interdependent dynamical processes operating on a 
population of N conformations. The whole population 
is guided towards the optimum of the free energy 
surface with a simple evolutionary strategy in which 
members of the population are drawn and then 
subjected to a basin hopping cycle. At the end of each 
cycle the resulting conformation either replaces a 
member of the active population or is discarded. This 
algorithm was implemented on a distributed master-
client model in which idle clients request a task from 
the master. Conformations are drawn with equal 
probability from the active population. The 
acceptance criterion for newly generated 
conformations must balance the diversity of the 
population against the enrichment low-energy decoys. 
We accept only new conformations which are 
different by at least 4 Å RMSB (root mean square 
backbone deviation) from all active members. If we 
find one or more members of the population within 
this distance, the new conformation replaces the all 
existing conformations if its energy is lower than the 
best, otherwise it is discarded. If the new 
conformation differs by at least the threshold from all 
other conformation it replaces the worst conformation 
of the population if it is better in total (free) energy. If 
a merge operation has reduced the size of the 
population, the energy criterion for acceptance is 
waived until the original number of conformations is 
restored.  

3 Results 
 

The simulation for the bacterial ribosomal protein 
L20 was performed in three stages: In the first stage 
we generate a large set of unfolded conformations, 
which was pruned to 266 conformations by energy 
and diversity. In stage two we 50 annealing cycles per 
replica, after which the population was pruned to the 
best N=50 decoys (by energy). We then continued the 
simulation for another 5500 annealing cycles. At the 
end of the simulations, the respective lowest energy 
conformations had converged to 4.3 Å RMSB with 
respect to the native conformation. Six of the ten 
lowest structures had independently converged to 
near-native conformations of the protein. The first 
non-native decoy appears in position two, with an 
energy deviation of only 1.8 kcal/mol (in our model) 
and a significant RMSB deviation.  
The good agreement between the folded and the 
experimental structure is evident from Figure (1) (left 
panel), which shows the overlay of the native and the 
folded conformations. The good alignment of the 
helices illustrates the importance of hydrophobic 
contacts to correctly fold this protein. Figure (2) 
demonstrates the convergence of both the energy and 
the average RMSB deviation as the function of the 
number of total iterations (basin hopping cycles). 
Both simulations had an acceptance ratio 
approximately 30 %.  
 

We have also folded the 40 amino acid HIV 
accessory protein(sequence: QEKEAIERLK 
ALGFEESLVI QAYFACEKNE NLAANFLLSQ, 
pdb-id: 1F4I)[43]. For timing purposes we have 
performed simulations using 64, 128, 256, 512, 1024, 
2048 and 4096 processors on an IBM BlueGene in 
virtual processor mode. We find that the simulation 
scales perfectly with the number of processors, 
inducing less than 5% loss of efficiency when 
comparing P=64 with P=4096 processor simulations. 
The control loop is implemented employing a 
synchronous simulation protocol, where tasks are 
distributed to all processors of the machine. As the 
simulations finish, their conformations are transferred 
to the master, which decides whether to accept 
(average probability: 57%) the conformation into the 
active population or disregard the conformation. Then 
a new conformation is immediately given to the idle 
processor. Because the processors are processed 
sequentially some processors wait for the master 
before they get a new conformation. Fluctuations in 
the client execution times induce a waiting time 
before the next iteration can start. For the realistic 
simulation times chosen in these runs, the average 
waiting time is less than 10% of the execution time 
and nearly independent of the number of processors 
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used.  
We next performed a simulation using 2048 
processors starting from a single completely stretched 
“stick” conformation. The seed conformation had an 
average RMSB deviation of 21.5Å to the 
experimental conformation. We then performed 20 
cycles of the evolutionary algorithm described above.  
Figure 1 shows the overlay of the folded and the 
experimental conformation. The starting 
conformation has no secondary structure and no 
resemblance of the native conformation. In the final 
conformation, the secondary structure elements agree 
and align well with the experimental conformation. 
Figure 2 shows that the best energy converges 
quickly to a near-optimal value with the total number 
of basin hopping cycles. The average energy trails the 
best energy with a finite energy difference. This 
difference will remain indefinitely by construction, 
because the algorithm is designed to balance diversity 
and energy convergence. The acceptance threshold of 
4 Å RMS for the new population enforces that only 
one near-native conformation is accepted in the 
population, the average energy will therefore always 
be higher than the best energy. 
 

4 Discussion 

 
Using a scalable evolutionary algorithm we have 
demonstrated the all-atom folding two proteins: 
Using 50 processors of loosely connected PC cluster 
we succeeded to fold the 60 amino acid bacterial 
ribosomal protein to near-native conformations. time 
using 2048 processors of an IBM BlueGene we also 

folded the 40 amino acid HIV accessory protein from 
a completely extended conformation to within 4 A of 
the native conformation in about 24 hours turnaround. 
The results of this study provide impressive evidence 
that all-atom protein structure prediction with free-
energy forcefields is becoming a reality. The key to 
convergence of the method lies in the exploitation of 
the specific characteristics of the free energy 
landscape of naturally occurring proteins. Following 
the current funnel paradigm[44,45] the protein 
explores an overall downhill process on the energy 
landscape, where the conformational entropy of the 
unfolded ensemble is traded for enthalpic gain of the 
protein and free energy gain of the solvent[46,7]. 
Using one- or low-dimensional indicators the 
complex folding process appears for many small 
proteins as a two-state transition between the 
unfolded and the folded ensemble with no apparent 
intermediates. This transition has been rationalized in 
terms of the funnel paradigm, where the protein 
averages over average frictional forces[14] on its 
downhill path on the free-energy landscape. In this 
context one cycle of the evolutionary algorithm 
attempts to improve many times each of the 
conformations of the active population. Because of 
the high dimensionality of the search problem 

( 160D =  free dihedral angles for 1F4I) most of these 
attempts fail, but those which succeed are efficiently 
distributed for further improvement by the 
evolutionary method.  
 
The search for methods and models for de novo 
folding of small and medium size proteins from the 

 
Figure 2: Instantaneous energy (red), mean energy (blue) and best energy (black) for the simulations of the bacterial ribosomal 
protein L20 (left) and the HIV accessory protein (right). For the bacterial ribosomal protein L20 the lower panel indicates the 

convergence of the RMS deviation of the lowest energy conformation. 
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completely extended conformation at atomic 
resolution has been a “holy grail” and grand 
computational challenge for decades. The 
development of multi-teraflop architectures, such as 
the IBM BlueGene used in this study, has been 
motivated in part by the large computational 
requirements of such studies. The demonstration of 
predictive folding of a 40 amino acid protein with less 
than 24 hours turnaround time, is thus an important 
step towards the long time goal to elucidate protein 
structure formation and function with atomistic 
resolution. The free-energy approach employed here 
can complement Hamiltonian based simulation 
methods, such as molecular dynamics or replica 
exchange methods, to understand how proteins fold 
and interact. The mapping of the “folding problem” 
onto an optimization problem permits the use of 
methods that speed the exploration of the free-energy 
surface. The results reviewed above demonstrate that 
it is possible to parallelize the search process by 
splitting the simulation into a large number of 
independent conformations, rather than by 
parallelizing the energy evaluation 
The present study thus demonstrates a computing 

paradigm for protein folding that may be able to 
exploit the petaflop computational architectures that 
are presently being developed. The availability of 
such computational resources in combination with 
free-energy folding methods can make it possible to 
investigate and understand a wide range of biological 
problems related to protein folding, misfolding and 
protein-protein interactions.  
 

Acknowledgments 
 

This work is supported by grants from the German 
national science foundation (DFG WE1863/10-2), the 
Secretrary of State for Science and Research through 
the Helmholtz-Society and the Kurt Eberhard Bode 
foundation. We acknowledge the use of facilities at 
the IBM Capacity on Demand Center in Rochester 
and KIST Supercomputional Materials Lab in Seoul. 
We are grateful for technical assistance from G. S. 
Costigan and C. S. Sosa from the IBM Capacity on 
Demand Center for technical assistance.  
 

 

1. Duan, Y. and P.A. Kollman, Pathways to a Protein 
Folding Intermediate Observed in a 1-Microsecond 

Simulation in Aqueous Solution. Science, 1998. 282: 
p. 740-744. 

2. Herges, T. and W. Wenzel, An All-Atom Force Field 
for Tertiary Structure Prediction of Helical Proteins. 
Biophys. J., 2004. 87(5): p. 3100-3109. 

3. Schug, A., et al. Stochastic Optimization Methods 

for Protein Folding. in Recent Advances in the 
Theory of Chemical and Physical Systems. 2006: 
Springer. 

4. Sugita, Y. and Y. Okamoto, Ab initio replica-
exchange Monte Carlo method for cluster studies. 
Chem. Phys. Lett, 1999. 314: p. 141-151. 

5. Wenzel, W. and K. Hamacher, Stochastic Tunneling 
Approach for Global Optimization of Complex 

Potential Energy Landscapes. Phys. Rev. Lett., 
1999. 82: p. 3003-3007. 

6. Nayeem, A., J. Vila, and H.A. Scheraga, A 

Comparative Study of the Simulated-Annealing and 

Monte Carlo-with-Minimization Approaches to the 

Minimum-Energy Structures of Polypeptides: [Met]-

Enkephalin. J. Comp. Chem., 1991. 12(5): p. 594-
605. 

7. Schug, A. and W. Wenzel, An evolutionary Strategy 
for All-Atom folding of the sixty amino acid bacterial 

ribosomal proein L20. {Biophys. Journal, 2006. 90: 
p. 4273-4280. 

8. Schug, A. and W. Wenzel, Predictive in-silico all-
atom folding of a four helix protein with a free-

energy model. J. Am. Chem. Soc., 2004. 126: p. 
16736-16737. 

9. Schug, A., et al. Stochastic Optimization Methods 

for Protein Folding. 2005. 
10. Carr, J.M. and D.J. Wales, Global optimization and 

folding pathways of selected -helical proteins. J. 
Chem. Phys., 2005. 123: p. 234901. 

11. Mortenson, P.N. and D.J. Wales, Energy 

landscapes, global optimization and dynamics of 

poly-alanine Ac(ala)$_8$:HMe. J. Chem. Phys., 
2004. 114: p. 6443-6454. 

12. Verma, A., et al., Basin Hopping Simulations for 
All-Atom Protein Folding. J. Chem. Phys., 2006. 
124: p. 44515. 

13. Kirkpatrick, S., C.D. Gelatt, and M.P. Vecchi, 
Optimization by Simulated Annealing. Science, 
1983. 220: p. 671-680. 

14. Dill, K.A. and H.S. Chan, From Levinthal to 
Pathways to Funnels: The ":ew View" of Protein 

Folding Kinetics. Nature Structural Biology, 
1997. 4: p. 10-19. 

 
 

Proceedings of the 2007 WSEAS Int. Conference on Cellular & Molecular Biology - Biophysics & Bioengineering, Athens, Greece, August 26-28, 2007      125


