
Wastewater Biodegradation Process Identification; a Multi Layer 
Approach via Distributions 

 
CONSTANTIN MARIN, EMIL PETRE, DAN SELIŞTEANU 

Department of Automation 
University of Craiova 

Craiova, Str. A. I. Cuza No.13 
ROMANIA 

cmarin@auto http://www.automation.ucv.ro 
 
 

Abstract: - The paper extends the procedures of wastewater biodegradation process (WBP) identification, as 
have been first presented by the authors in [11], [12]. These procedures allow identification of all process 
parameters in both cases they are time constant or time variant. The identification problem is formulated as a 
condition to vanish the existence relation of the system. This relation is represented by functionals using 
techniques from distribution theory based on testing function from a finite dimensional fundamental space. As 
the WBP expresses rational dependences between parameters and some measurable variables, the main idea of 
these procedures is to use a hierarchical multi layer structure of identification, which allows obtaining string of 
linear algebraic systems of equations in the unknown parameters. The coefficients of these algebraic systems 
are functionals depending on the input and output variables evaluated through some testing functions from 
distribution theory. According to the proposed procedure, in the firs layer, only some state equations are 
evaluated throughout testing functions to obtain a set of linear equations in some parameters. The results of 
this first layer of identification are utilized for expressing other parameters by linear equations in the next 
layer. This process is repeated until all parameters are identified. The time variant laws are expressed as finite 
degree time polynomials whose parameters are included in the set of parameters to be identified. Applications 
for parameter identification of waste water biodegradation processes are presented. By examples, the potential 
of the method is revealed. 
 
Key-Words: - Identification; Bioprocesses, Wastewater biodegradation, Distribution theory; Functionals. 

 
1   Introduction 
As presented in [11], progresses have been made in 
the area of continuous-time system identification. 
Many discussions, methods and results on 
continuous-time identification are presented in, [2]; 
[4], [8], [9]; [14], [15], [16]. 
A novel approach for continuous-time system 
identification is that based on distribution theory, 
using deterministic distributions [10] or random 
distributions [13]. Identification of the non-linear 
continuous-time systems is far away more 
complicated. The traditional procedures are based on 
the Volterra functional series, expressed in time 
domain [3] or frequency domain [6]. The parameter 
identification of deterministic nonlinear continuous-
time systems (NCTS), modelled by polynomial type 
differential equation, has been considered by 
numerous authors, [15], [16]. In [11], it is presented 
a method for identification of nonlinear continuous 
time systems (NCTS) considering that the unknown 
parameters can appear in rational relations with 
measured variables. Using techniques utilized in 
distribution approach [7], [8], [9], the measurable 

functions and their derivatives are represented by 
functionals on a fundamental space of testing 
functions. Such systems are common in 
biotechnology [1], [17], [18].  
The main idea from [11] is to use a hierarchical 
multi layer structure of identification. First, some 
state equations are utilized to obtain a set of linear 
equations in some parameters. The results of this 
first stage of identification are utilized for 
expressing other parameters by linear equations. 
This process is repeated until all parameters are 
identified. The above idea of hierarchical multi layer 
structure identification has been extended to time 
variant systems [12]. Variable parameters are 
modelled by finite degree time polynomials whose 
unknown coefficients are included in the set of 
parameters to be identified. To transform a 
differential time variant system of equations to an 
algebraic system of functionals, the so-called 
weighted distributions are considered. Weighted 
distributions are nothing else rather the product 
between time functions and distributions. 
The paper is organized as follows: The mathematical 
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model of wastewater biodegradation process is 
given in Section 2. Section 3, presents some aspects 
regarding distribution approach of identification. 
The hierarchical structure of identification and 
estimation equations takes the space of Section 4. 
Some experimental results are presented in Section 
5, and conclusions in Section 6. 
 
 
2   Mathematical model of wastewater 
biodegradation process 
We consider a biomethanation process - wastewater 
biodegradation with production of methane gas that 
takes place inside a Continuous Stirred Tank 
Bioreactor whose reduced model is presented in 
[18]. It is a two phases process. In the first phase, 
the glucose from the wastewater is decomposed in 
fat volatile acids (acetates, propionic acid), 
hydrogen and inorganic carbon under action of the 
acidogenic bacteria. In the second phase, the ionised 
hydrogen decomposes the propionic acid 
CH3CH2COOH in acetates, H2 and carbon dioxide 
CO2. In the first methanogenic phase, the acetate is 
transformed into methane and CO2, and finally in 
the second methanogenic phase, the methane gas 
CH4 is obtained from H2 and CO2, [1], [17]. The 
following simplified reaction scheme is considered, 
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where: 1S  represents the glucose substrate, 2S  the 
acetate substrate, 1X  is the acidogenic bacteria, 2X  
the acetoclastic methanogenic bacteria and 1P  
represents the product, i.e. the methane gas. The 
reaction rates are denoted by 1 2,φ φ . 
The corresponding dynamical model is 

 

1 1

1 1 1
1

2 2
2

2 2 3 2

1 4 1 1

1 0 0
0

0 1 0
0

0

in

X X
S k S DS

d DX X
dt

S k k S
P k P Q

φ
φ

       
       −               = − +         −       
       −       

 (2) 

where the state vector of the model is  
 1 1 2 1 1 1 2 3 4 5[ ] [ ]= =T TX S X S Pξ ξ ξ ξ ξ ξ  (3) 
whose components are concentrations in (g/l).  
The reaction rates are nonlinear functions of the 
state components, expressed as 
 1 2( ) [ ( ) ( )]Tφ φ ξ φ ξ φ ξ= = .   (4) 
The vector of feed rates and of rates of removal of 
components is denoted 
 1[0 0 0 ]= ⋅ − T

inF D S Q    (5) 
where, D is the dilution rate, a scalar in this 

particular case, inS  represents the concentration of 
the externally influent substrate–glucose, 1Q  is the 
methane gas outflow rate. 
The dynamical model (2) can be compactly written  
 / ( )d dt K D Fξ φ ξ ξ= ⋅ − ⋅ + .  (6) 
In fact, this model describes the behavior of an 
entire class of biotechnological processes. It referees 
as the general dynamical state-space model of this 
class of bioprocesses [1]. In (6), K is the so-called 
matrix of the yield coefficients ijk  

 1 2

3 4

1 0 0
0 0 1

− 
=  − 

Tk k
K

k k
 (7) 

The reaction rates for this process are given by the 
Monod law  
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⋅
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,   (8) 

and the Haldane kinetic model 

 
2

2 2
2 2 2

2 2

( )
/M i

S X
K S S K

φ ξ µ
⋅

= ⋅
+ +

,  (9) 

where 
1 2
,M MK K  are Michaelis-Menten constants; 

1 2,µ µ  represent specific growth rates coefficients 
and iK  is the inhibition constant. For simplicity, 
shall we denote the plant parameters by the vector  
 1 2 3 4 5 6 7 8 9[ ]= Tθ θ θ θ θ θ θ θ θ θ   (10) 
where 
 1 1 2 2 3 3 4 4; ; ;= = = =k k k kθ θ θ θ   (11) 
 5 1 6 2;= =θ µ θ µ     (12) 
 

1 27 8 9; ;= = =M M iK K Kθ θ θ   (13) 
Because the dilution rate D can be externally 
modified, it will be considered the third component 
of the input vector  1 2 3[ ]= Tu u u u . The other two 
components of u  are the concentration inS  and the 
methane gas outflow rate 1Q so,  
 1 2 1 3; ; ;= = =inu S u Q u D    (14) 
Usually 1Q depends on state variables, 1 ( )= ΨQ ξ , 
determining a feedback to the input 2u . Written 
explicitly by components, the state equations (2) or 
(6), within the above notations, takes the form, 
 1 1 3 1uξ φ ξ= − ⋅     (15) 

 1 2
1 5

7 2

ξ ξ
φ θ

θ ξ
⋅

= ⋅
+

    (16) 

 2 1 1 3 2 1 3u u uξ θ φ ξ= − ⋅ − ⋅ + ⋅    (17) 
 3 2 3 3uξ φ ξ= − ⋅     (18) 

 '3 4
2 6 9' 2

98 4 9 4

1,
ξ ξ

φ θ θ
θθ ξ θ ξ

⋅
= ⋅ =

+ + ⋅
  (19) 

 4 2 1 3 2 3 4uξ θ φ θ φ ξ= ⋅ − ⋅ − ⋅    (20) 
 5 3 5 4 2 2u uξ ξ θ φ= − ⋅ + ⋅ −    (21) 
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3   Distribution  approach  of 
identification 
Let us denote by nΦ  the fundamental space from 
distribution theory [5], of the real fundamental 
functions,  
 : , ( )t tϕ ϕ→ → ,   (22) 
with compact support T , having continuous 
derivatives at least up to the order n . A distribution 
is a linear, continuous (in the above topology) real 
functional on nΦ , : , ( )nF Fϕ ϕΦ → → ∈ . Let  
 : , ( )q t q t→ →     (23) 
be a function which admits a Riemann integral on 
any compact interval T from . Using this function, 
a unique distribution : , ( )q n qF Fϕ ϕΦ → → ∈ can 
be build by the relation ( ) ( ) ( ) ,q nF q t t dtϕ ϕ ϕ= ⋅ ⋅ ∀ ∈Φ∫ . 

In distribution theory, the notion of distribution k-
order derivative, 0 :k n= ,[5], is, 
 ( ) ( )( ) ( 1) ( ),k k k

q q nF Fϕ ϕ ϕ= − ⋅ ∀ ∈Φ  
 ( ) ( )( ) ( 1) ( ) ( )k k k

qF q t t dtϕ ϕ ϕ→ = − ⋅ ⋅ ⋅ ∈∫  (24) 

Let now consider a dynamical continuous time 
system with un  inputs, : , ( ) ,unu t u t u→ → ∈Ω  
and yn outputs, : , ( ) ,yny t y t y→ → ∈Γ , where 
Ω  represents the set of admissible inputs and Γ is 
the set of possible outputs. It can be expressed by a 
differential operator, 
 /( , ) ( , , )u yq Q u yθ θ= =0   (25) 
whose expression depends on a vector of parameters 

1[ ... ... ]T
i pθ θ θ θ= . The operator (25), whose class 

can be determined, represents a family of models 
with a given structure in constant parameters. A 
special case is the model (25) expressing a linear 
relation in the parameters  

 /( , )
1

( , , )
p

T
u y i

i

q Q u y w v w vθ θ θ θ
=

= = ⋅ − = ⋅ −∑ , (26) 

where iw  and v  represent a sum of the derivatives 
of some known, possible nonlinear, functions 

j
iψ , 0

jψ , with respect to the input and output 
variables, 

( )

1
[ ( , )] , 1:

i j
i

p
nj

i i
j

w u y i p
=

= =∑ ψ ,
0

0( )
0

1
[ ( , )]

j
p

nj

j

v u yψ
=

= ∑  (27) 

Parameters 0 0, , ,j j
i ip n p n  are given integer numbers. 

The identification problem, into condition (26), has 
a unique solution. An identification problem means 
to determine the parameterθ θ= , given the priori 
information on the model structure Q , (25), and the 
observed input-output pair ( , )T Tu y , ( , , )T Tu y Qθ θ= , 
in a such a way that, /( , ) ( ) 0,

T Tu yq t tθ = ∀ ∈ . 

Now let us consider known the set of continuous 
time scalar functions (27), 

( ) ( )

1 1
( ) [ ( ( ), ( ))] [ ( )] , 1:

i ij j
i i

p p
n nj j

i i i
j j

w t u t y t t i pψ ψ
= =

= = =∑ ∑  (28) 

0 0
0 0( ) ( )

0 0
1 1

( ) [ ( ( ), ( ))] [ ( )]
j j

p p
n nj j

j j

v t u t y t tψ ψ
= =

= =∑ ∑ . (29) 

Based on these functions, the regular 
distributions , 1:

iwF i p= , are generated by relations, 

 ( )
( ) : , ( )i

nii i i

n
w n wF F F Fψ ψ

ϕ ϕ= = Φ → →  (30) 

( ) ( )

1 1

( ) [ ( )] ( ) ( 1) [ ( )] ( )
i ij j j

i i i

i

p p
n n nj j

w i i
j j

F t t dt t t dt
= =

= ⋅ ⋅ = − ⋅ ⋅∑ ∑∫ ∫ϕ ψ ϕ ψ ϕ

They constitute the row vector, 
 

1
( ) [ ( ),..., ( ),..., ( )]

i p

T p
w w w wF F F Fϕ ϕ ϕ ϕ= ∈ . (31) 

Also, the regular distribution vF , is 
 0

( )00

( ) : , ( )n
n

v n vF F F Fψ ψ
ϕ ϕ= = Φ → →  (32) 

0 0
0 0 0( ) ( )

0 0
1 1

( ) [ ( )] ( ) ( 1) [ ( )] ( )
j j

p p
n nnj j

v
j j

F t t dt t t dt
= =

= ⋅ ⋅ = − ⋅ ⋅∑ ∑∫ ∫ϕ ψ ϕ ψ ϕ

Into this conditions, any input-output pair ( ,u y ) 
observed from the system (25) is described by a pair 
of regular distribution ( ,w vF F ) for any nϕ ∈Φ .  
In such a way, the problem of identification 
regarding the parameters of the real system (25) can 
be represented by distributions. For example, the 
regular distribution generated by the continuous 
function /( , )u yqθ from (25), into the specific case of 
(26) is related to the parameter vector θ  as 

θ
1

( ) ( ) ( ) ( ) ( ),
i

p
T

q w i v w y n
i

F F F F F
=

= ⋅ − = ⋅ − ∈Φ∑ϕ ϕ θ ϕ ϕ θ ϕ ϕ  

If a triple ( *, *, *)u y θ is a realization of the model 
(25), then the identity (34) takes place, 
 

θ* θ* /( *, *)( ) ( ) 0,q q u y nF Fϕ ϕ ϕ= = ∀ ∈Φ  (34) 
and vice versa, if an input-output pair ( *, *)u y  of the 
family of models (25), with unknown parameter θ , 
generates a distribution  

 
θ θ /( *, *)

1

( ) ( ) ( ) ( )
i

p

q q u y w i v
i

F F F Fϕ ϕ ϕ θ ϕ
=

= = ⋅ −∑  (35) 

which satisfies 
θ θ /( *, *)( ) ( ) 0,q q u y nF Fϕ ϕ ϕ= = ∀ ∈Φ , 

then *θ θ= . As θ  has p components it is enough a 
chose (utilize) a finite number N p≥  of 
fundamental function , 1:i i Nϕ =  and to build an 
algebraic equation, 
 w vθ⋅ =F F      (36) 
where wF  is an ( N p× ) matrix of real numbers 
 1[ ( );...; ( );...; ( )]T T T T

w w w i w NF F Fϕ ϕ ϕ=F  (37) 
where i-th row ( )T

w iF ϕ  is given by (31). The symbol 
vF denotes an N -column real vector built from (32), 
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 1[ ( ),..., ( ),..., ( )]T
v v v i v NF F Fϕ ϕ ϕ=F . (38) 

When only the restriction ( ,T Tu y ) of the pair ( ,u y ) 
on the time interval T , is available, then one must 
chose iϕ  such that isupp( ) , 1:T i Nϕ ⊂ ⊂ = . If 

( )wr rank p= =F , then a unique solution  is obtained. 
 1( ) *T T

w w w vθ θ−= ⋅ ⋅ ⋅ =F F F F   (39) 
 
 
4 The hierarchical structure of 
identification and estimation equations 
Consider all state variables accessible for 
measurements so y ξ= . The dynamical system 
(15) ÷ (21) contains rational dependences between 
parameters and measured variables. To obtain linear 
equations in unknown parameters, the identification 
problem is split in several simpler interlinked 
identification problems called identification layers. 
Based on the specific structure of this system, it is 
possible to group the state equations, in such way to 
determine five interconnected identification 
problems of the type (39), labelled Layer_*, *=a, b, 
c, d, e. They are organized in a hierarchical 
structure. First, in Layer_a, some state equations are 
utilized to obtain a set of linear equations in some 
parameters. The results of this first stage of 
identification are utilized for expressing other 
parameters by linear equations in Layer_b. This 
process is repeated in the other layers until all 
parameters are identified. For each identification 
layer, the same type of procedures and numerical 
algorithms are applied.  
Layer_a: Identification of 1θ .  
Substituting expression 1φ  from (15) into (17) we 
obtain, the Layer_a model (25) 
       /( , ) 1 3 1 1 2 3 2 1 3( ) ( )a

u yq u u u uθ ξ ξ θ ξ ξ= + ⋅ ⋅ − − − ⋅ + ⋅  (40) 
characterized by 1 1[ ] [ ] , 1a a apθ θ θ= = =  

1

(1) (0)
1 3 1( ) [ ( )] ( ) [ ( ) ( )] ( )a

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + ⋅ ⋅ ⋅∫ ∫  

1

, ( ) [ ( )]a T a
w wF Fϕ ϕ= . Also, (1)

2( ) [ ( )] ( )a
vF t t dtϕ ξ ϕ= ⋅ ⋅ +∫  

(0) (0)
3 2 1 3[ ( ) ( )] ( ) [ ( ) ( )] ( )u t t t dt u t u t t dtξ ϕ ϕ+ − ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅∫ ∫  

Layer_b: Identification of 5 7,θ θ .  
Considering known 1 1θ θ= from the Layer_a, and 
substituting (16), equation (17) becomes, 

 1 2
2 1 5 3 2 1 3

7 2

u u u
ξ ξ

ξ θ θ ξ
θ ξ

⋅
= − ⋅ ⋅ − ⋅ + ⋅

+
 

The Layer_b model (25) is now, 
 /( , ) 1 2 1 5 2 3 2 1 3 7( ) ( )b

u yq u u uθ ξ ξ θ θ ξ ξ θ= ⋅ ⋅ ⋅ + + ⋅ − ⋅ ⋅ −  
 2

2 2 3 2 1 3 2( )u u uξ ξ ξ ξ− − ⋅ − ⋅ + ⋅ ⋅   (41) 

characterized by 1 2 5 7[ ] [ ] , 2b b b bpθ θ θ θ θ= = =  
 

1

(0)
1 2 1( ) [ ( ) ( ) ] ( )b

wF t t t dtϕ ξ ξ θ ϕ= ⋅ ⋅ ⋅ ⋅∫  

 
2

(1) (0)
2 3 2( ) [ ( )] ( ) [ ( ) ( )] ( )b

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + ⋅ ⋅ ⋅ +∫ ∫  

(0)
1 3[ ( ) ( )] ( )u t u t t dtϕ+ − ⋅ ⋅ ⋅∫ ;

1 2

, ( ) [ ( ) ( )]b T b b
w w wF F Fϕ ϕ ϕ=  

Also,  2 (1)
2

1( ) [ ( )] ( )
2

b
vF t t dt= ⋅ ⋅ ⋅ +∫ϕ ξ ϕ  

2 (0) (0)
3 2 1 3 2[ ( ) ( )] ( ) [ ( ) ( ) ( )] ( )u t t t dt u t u t t t dt+ − ⋅ ⋅ ⋅ + + ⋅ ⋅ ⋅ ⋅∫ ∫ξ ϕ ξ ϕ

Layer_c: Identification of 2 3,θ θ  
Considering known 5 5 7 7;θ θ θ θ= =  from the Layer_b 
the estimated expression 1φ , of the rational 1φ , is 

 1 2
1 5

7 2

ξ ξ
φ θ

θ ξ
⋅

= ⋅
+

    (42) 

whose time expression is  1 2
1 5

7 2

( ) ( )
( )

( )
t t

t
t

ξ ξ
φ θ

θ ξ
⋅

= ⋅
+

. 

Substituting expression 2φ  from (18) and (42) 
instead of 1φ into (20) we obtain,  
 4 2 1 3 3 3 3 3 4[ ]u uξ θ φ θ ξ ξ ξ= ⋅ − ⋅ + ⋅ − ⋅  
which determines the Layer_c model (25) 
      /( , ) 1 2 3 3 3 3 4 3 4( ) ( ) ( )c

u yq u uθ φ θ ξ ξ θ ξ ξ= ⋅ + − − ⋅ ⋅ − + ⋅  (43) 
characterized by 1 2 2 3[ ] [ ] , 2c c c cpθ θ θ θ θ= = =  
 

1

(0)
1( ) [ ( )] ( )c

wF t t dtϕ φ ϕ= ⋅ ⋅∫  

 
2

(1) (0)
3 3 3( ) [ ( )] ( ) [ ( ) ( )] ( )c

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= ⋅ ⋅ + − ⋅ ⋅ ⋅∫ ∫  

 
1 2

, ( ) [ ( ) ( )]c T c c
w w wF F Fϕ ϕ ϕ=  

Also, (1)
4( ) [ ( )] ( )c

vF t t dtϕ ξ ϕ= − ⋅ ⋅ +∫  

 (0)
3 4[ ( ) ( )] ( )u t t t dtξ ϕ+ ⋅ ⋅ ⋅∫  

Layer_d: Identification of /
6 8 9, ,θ θ θ .  

Considering known 2 2 3 3,θ θ θ θ= =  from the 
Layer_c, and substituting (19) in equation (20) 
where 1φ is replaced by 1φ we obtain, 

 3 4
4 2 1 3 3 4' 2

8 4 9 4

u
ξ ξ

ξ θ φ θ ξ
θ ξ θ ξ

⋅
= ⋅ − ⋅ − ⋅

+ + ⋅
 

The Layer_d model (25) is now, 
 /( , ) 3 4 3 6 4 3 4 2 1 8( ) ( )d

u yq uθ ξ ξ θ θ ξ ξ θ φ θ= ⋅ ⋅ ⋅ + + ⋅ − ⋅ ⋅ +  
 2 3 2 /

4 4 3 4 2 1 4 9( )uξ ξ ξ θ φ ξ θ+ ⋅ + ⋅ − ⋅ ⋅ ⋅ −  
 2

4 4 3 4 2 1 4( )uξ ξ ξ θ φ ξ− − ⋅ − ⋅ + ⋅ ⋅   (44) 
characterized by 
 /

1 2 3 6 8 9[ ] [ ] , 3d d d d dpθ θ θ θ θ θ θ= = =  
 

1

(0)
3 4 3( ) [ ( ) ( ) ] ( )d

wF t t t dtϕ ξ ξ θ ϕ= ⋅ ⋅ ⋅ ⋅∫  
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2

(1) (0)
4 3 4( ) [ ( )] ( ) [ ( ) ( )] ( )d

wF t t dt u t t t dtϕ ξ ϕ ξ ϕ= − ⋅ ⋅ + ⋅ ⋅ ⋅ +∫ ∫  

(0)
2 1[ ( ) ( )] ( )t t t dtθ φ ϕ+ − ⋅ ⋅ ⋅∫ ;

1 2 3

, ( ) [ ( ) ( ) ( )]d T d d d
w w w wF F F Fϕ ϕ ϕ ϕ=  

2 (1) 2 (0)
4 3 4

1( ) [ ( )] ( ) [ ( ) ( )] ( )
2

d
vF t t dt u t t t dt= ⋅ ⋅ ⋅ + − ⋅ ⋅ ⋅ +∫ ∫ϕ ξ ϕ ξ ϕ  

 (0)
2 1 4[ ( ) ( ) ( )] ( )t t t t dtθ φ ξ ϕ+ ⋅ ⋅ ⋅ ⋅∫  

Layer_e: Identification of 4θ  
Considering known / /

6 6 8 8 9 9; ;θ θ θ θ θ θ= = = , from the 
Layer d identification, the estimated expression 2φ , 
of the nonlinear function 2φ , is 

 3 4
2 6 / 2

8 4 9 4

ξ ξ
φ θ

θ ξ θ ξ
⋅

= ⋅
+ + ⋅

    (45) 

whose time expression is 

 3 4
2 6 / 2

8 4 9 4

( ) ( )
( ) ( )
t t
t t

ξ ξ
φ θ

θ ξ θ ξ
⋅

= ⋅
+ + ⋅

. 

Substituting expression (45) instead of 2φ into (21),  
 5 3 5 4 2 2u uξ ξ θ φ= − ⋅ + ⋅ −  
which determines the Layer_e model (25) 
 /( , ) 2 4 5 3 5 2( ) ( )e

u yq u uθ φ θ ξ ξ= ⋅ − + ⋅ +  (46) 
characterized by 1 4[ ] [ ] , 1e e epθ θ θ= = =  

1

(0)
2( ) [ ( )] ( )e

wF t t dtϕ φ ϕ= ⋅ ⋅∫ ; 
1

, ( ) [ ( )]e T e
w wF Fϕ ϕ= . Also,  

 (1)
5( ) [ ( )] ( )e

vF t t dtϕ ξ ϕ= − ⋅ ⋅ +∫  

 (0) (0)
3 5 2[ ( ) ( )] ( ) [ ( )] ( )u t t t dt u t t dtξ ϕ ϕ+ ⋅ ⋅ ⋅ + ⋅ ⋅∫ ∫  

 
 
7   Experimental results 
The model given by (15) - (21) and the hierarchical 
identification procedure developed in this paper has 
been implemented in Matlab. Three types of 
experiments ware performed. 1. Noise free; 2. 
Constant parameters but output measurements are 
noise contamined; 3. Some process parameters have 
random variations around constant values. Twelve 
types of testing functions ( )tϕ , characterized by a 
bounded support [ , ],a b a bT t t t t= <  are considered. All 
of these accomplish the condition ( ) 0, ( , )a bt t t tϕ = ∉ , 
The nonzero restriction, is of the form 

( ) ( , ) ( , , )a b a b nt t t t t tϕ α β= ⋅ ⋅Ψ ∈Φ ,where, for 1p n≥ +  
( ) ( , , ) C [( , )]n

a b a bt t t t t tΨ = Ψ ∈  is one of the four types,  
1. Exponential: ( ) exp[| | / ( ) ( ) ]a b a bt t t t t t tΨ = ⋅ − ⋅ − ; 
2. Sinusoidal: ( ) sin [ ( ) / ( ) ]p

b b at t t t tπΨ = ⋅ − − ,  
3. Polynomial : ( ) ( ) ( )p p

a bt t t t tΨ = − ⋅ − , 
4. Product : ( ) ( ) ( )a bt f t f tΨ = ⋅  , where  
 C [( , )], C [( , )]n n

a a b b a bf t t f t t∈ ∈ , ; 1a bp p n≥ +  

 ( ) ( ) 0, 0 :k
a a af t k p= = ; ( ) ( ) 0, 0 :k

b b bf t k p= = . 
For each of the four types, three variants can be 
implemented with respect to the coefficient 

( , )a bt tβ β= . Here , α is a scaling factor. 
a. Free amplitude: ( , ) 1, ,a b a bt t t tβ = ∀  
b. Normalized peak: 
 ( , ) 1/ max | ( , , ) |, ,a b a b a bt T

t t t t t t tβ
∈

= Ψ ∀  

c. Normalized area: 
 ( , ) 1/ ( , , ) , ,b

a

t

a b a b a bt
t t t t t t tβ = Ψ ∀∫  

Fig.1 shows the noise free system time response.  
 
 
 
 

 
 
 
 
 
Fig.1 Time response for noise free system 
 
 
 
 
 
 
 
 
For this identification, 3 testing functions 1 2 3, ,ϕ ϕ ϕ of 
the type 2c (sinusoidal-normalized area), of the 
degree 4p = , on the intervals 1 (0,5)T = , 2 (5,10)T = , 

3 (10,15)T = , has been utilized. Fig.2 shows the noise 
contamined measured variables utilized in 
identification. 
 
 
 
 
 
 
 
 
 
Fig.2. Noise contamined measured variables  
 
 
 
 
 
 
 
 

Noise free identification results 
  Real values     Identified values 
 5.40000000000000   5.39999999968883 
 1.00000000000000   0.99999999988881 
14.70000000000000  14.70000000094740 
10.00000000000000   9.99999993145097 
 0.20000000000000   0.20000000002676 
 0.60000000000000   0.60000000028379 
 0.75000000000000   0.75000000078192 
 1.00000000000000   1.00000000065981 
21.00000000000000  20.99999936217280 

Noise contamined identification 
  Real values        Identified values 
   5.40000000000000   5.38519339180525 
   1.00000000000000   1.00400800428003 
  14.70000000000000  14.70349693406084 
  10.00000000000000   9.99770002079475 
   0.20000000000000   0.19740257180333 
   0.60000000000000   0.59212639221193 
   0.75000000000000   0.63453032445845 
   1.00000000000000   0.98606989066886 
 21.00000000000000  22.94469606537222

Proceedings of the 2007 WSEAS Int. Conference on Cellular & Molecular Biology - Biophysics & Bioengineering, Athens, Greece, August 26-28, 2007      5



0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

70

80

←
 ξ 1

 = 
X 1

←
 ξ 2

 = 
S 1 ←

 ξ 3
 = 

X 2

←
 ξ 4

 =
 S 2

←
 ξ 5

 = 
P 1

Time sec.

y(
t)=
ξ (

t) Free noise identification

Time 

 
 
 
 
 
 
 
 
 
 
 
Fig.3. Time response for other unknown parameters  
 
 
 
 
 
 
 
 
 
 
8   Conclusion 
Through this research has been proved that it is 
possible to identify all parameters of continuous 
time nonlinear systems even if they are related to 
measured variables by rational expressions. This is 
possible if the identification problem is formulated 
as a set of interconnected identification problems 
with linear dependences between parameters and 
measured variables. The problem of functionals 
based identification consistency has to be analyzed 
for a broader class of nonlinear systems. 
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Free noise contamined identification 
  Real values        Identified values 
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   1.00000000000000   0.99999999883225 
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