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Abstract: The dielectric response of biological cells is usually studied by measuring the impedance of 
suspensions or by a variety of single particle methods,  that exploit different force effects. For biological 
objects the most striking frequency-dependent changes in polarizability result from structural (Maxwell-
Wagner) polarization phenomena. Standard dielectric models consider the structural properties of cells by 
assuming spherical or ellipsoidal geometries. However, many such biological particles deviate from the 
ellipsoidal form. In the present paper an approximation procedure is derived for the general case of an 
arbitrarily shaped dielectric object. The here presented approach results in closed analytical solutions. 
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1. Introduction 
 
Microdevices for applications in a wide 
range of biologically and medically 
related technologies are increasingly 
based on the advanced technologies of 
microelectronic structuring and 
fabrication. Bioparticles are suspended 
in a stationary fluid, and force effects are 
imparted on them by the application of 
electric fields for dielectric 
characterization, trapping, manipulation 
or separation [1- 6]. Calculations of the 
frequency dependence of force effects 
are primarily based on spherical or 
ellipsoidal models, the standard 
approach to biological cells. In 
particular, single-shell models with 
Maxwell’s stress tensor [7] or the 
Laplace equation are used. In order to 
arrive at explicit solutions of the Laplace 
equation, a homogeneous ellipsoid as the 
only material body with a constant local 
(internal) field has to be assumed. 
Integrating over this field leads to the 
induced dipole moment, providing the 
exposure of the ellipsoid to a 
homogeneous external field. The 
induced dipole moment is directly 
related to force effects acting on the 
particle. How exact the frequency-
dependent force effects and 

corresponding spectra can be 
reproduced, depends on the precision of 
the calculus for the local field and the 
dipole moment. 
However, many particles and biological 
cells, including erythrocyte cell 
aggregates, as an example, deviate from 
the ellipsoidal form, and in order to 
account for these specially shaped cells, 
more adequate models are required. 
Driven by the growing interest and 
impact of physical contributions to life 
sciences [8], complex geometries, such 
as rods and cylinders, need to be 
considered. Characterized by the 
unavailability of analytical solutions for 
the field distribution within such 
dielectric bodies, finite element 
numerical techniques have been 
developed recently [9], with the 
compromise of claiming considerable 
computer resources, though. 
 
This paper deals with an approximation 
procedure for the calculation of the 
depolarization field  in a material 
body of general shape, e.g. a 'coin stack' 
of erythrocytes, with a dielectric 
constant , which is brought into any 
given field , yielding an analytical 
solution. 
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2. Depolarization field calculation 
 
The problem, which is treated here, can 
be formulated as follows: The internal 
field  generates a polarization. 
This polarization induces on the surface 
element  of the dielectric body a 
polarization charge 
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which by virtue of the Coulomb law, 
together with the unperturbed field , 
generates finally the depolarization field, 
such that 
     (1) 
 

 
 

The integration is carried out over the 
surface of the dielectric body;  points 
outward, and  combines the origin at 

 with the integration element at . The 
relation between  and  is 
supposed by us to be lineal:   

     (2)
  

 
 

In general,  is a tensor, as the 
directions of  and  are not necessarily 
parallel. It further depends on the 
coordinates inside the sample due to the 
locally different action of the 
polarization charges. In order to 
calculate  or  from Eqs. (1, 2), 
we make the assumption, that  does not 
depend on , which of course is exactly 
fulfilled only in homogeneous ellipsoids. 
Here it is an approximation, which 
allows us to get to viable solutions which 
will be tested at the end by an 
experimental comparison. 
 
The polarization, established inside the 
dielectric, is due to the displacement of 
the electrical charges enforced by the 
field   . Surface charges are built up 
and counteract the complete 
displacement corresponding to the  field  

. We will suppose here, that the 
whole set of charges experiences the 
same displacement, which means, that 
=constant. We further suppose, that the 

polarization vector  points more or less 
into the direction of  , i.e., we will 
consider the projection of the field, 
generated by the polarization charges, on 
the direction of : 
     (3) 

 
 

 
 

     
 

This value  allows considering a first 
approximation of the polarization , 
which on the surface of the dielectric 
generates charges, and thus an additional 
field inside the dielectric. The problem 
would be completely solved, if the total 
field at any place fulfills already the 
condition 
 

 
 
but in general, the polarization  of the 
first approximation step will not be 
sufficient to describe the real situation, 
and a field  keeps acting on the 
dielectric with the effect of an additional 
polarization , 
     (4) 

 
  

 
 can be calculated with  in the 

same way, as  was calculated with 
. 

 
The number of approximation steps 
needed to achieve the best results 
depends on the complexity of the shape 
of the dielectric body, as well as the 
allowed error of the result. 
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3. The depolarization field inside a 
cylinder shaped particle 
 
Exact solutions are known for the 
sphere, the infinitesimal thin wire, and 
the infinitesimal extended disk. When 
our approach is applied here, already the 
first approximation step gives the exact 
solution, as it should be, when 
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The polarization of a prolate spheroid 
(Fig. 1) results with Eq. 2 in  
     (5) 
 

,  
 
where q = b2/ (a2 + b2). 
For an oblate ellipsoid one gets 
 

 
 
and consequently with q   (or a = b) 
we have for the sphere-shaped dielectric 

 and thus the known result 
 

 
 
Not so straightforward is the situation in 
the case of a cylinder in a homogeneous 
electric field  (see Fig. 2).  
We get 
     (6) 
 

 
 

 
 

         
 

Such a homogeneous polarization is only 
the first approximation. Due to the 

choice of the origin at z = 0, the by P 
generated field will be too weak in the 
transversal plane at z = 0, but along the 
z-axis at the limiting faces of the 
cylinder it is too strong. A field  
remains as given in Eq. (4), which 
delivers the depolarization at the 
cylinder top and bottom faces in a 
second approximation step. 
 

 
Fig. 1. Prolate ellipsoid 

 
The integrations, involved in this step, 
are quite tedious and will not be carried 
out exactly here. We proceed instead as 
follows:  is largest at the center of 
the plane cylinder faces, thus we put the 
origin at the center of one of this faces 
S (see Fig. 2) and concentrate all the 
charge  at this center. (The real 

migth be slightly larger, but this effect 
is compensated by a stronger inclination 
against the surface). The charge at the 
opposite side face acts on  after the 
Coulomb law, and provided L/R 1, 
like an point charge  / ·4L2, but 
for L/R 1 like an extended charged 
disk with . A suitable interpolation 
or this field for the complete range L/R 
is about ( 2/R2)-1. The 
normal component of field belonging to 
the side face, which contains  is , 
and consequently results the normal 
component  at both side faces S to 
 

 
 
The normal component of  at the 
cylinder cover area C (see Fig. 2) is 
approximately 
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The surface integral of  contains then 
the following contributions:  from the 
top faces containing , 

 from the opposite 
side face, and from the cover area C 
 

Fig. 2. Dielectric cy
diam

 

 

 
Thus 

The surface 

the effect of reduc
side faces, but incr
area close to the s
moment of the c
approximation yiel
   
 

 

   
 
The first part of th
homogeneous 
consideration of o
situated on the s
remaining part co
approximation, a 
contribution at both
 
 
 

4. Conclusion 
 
The general approach for the calculation 
of the depolarization field in biological 
objects (or particles of any shape) is 
exemplified by the derivation of an 
analytical expression for the dipole  

2R 

Proceedings of the 2007 WSEAS Int. Conference on Cellular & Molecular Biology - Biophysics & Bioengineering, Athens, Greece, August 26-28, 2007      49
2L
lin
et
 

 

 w
in
ea
id
yl
ds

e e
po
nly
ide
ns
sl
 e

moment of a short cylinder shaped 
 
d

er

c
h

g 
si
e 
in
 t
 

 

q
la
 
 
id
ig
n

particle (e.g. a stack of erythrocytes). 
The second approximation counts for 
about 10% improvement of the 
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the charge density 
faces S, and the 
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ht depolarization 

ds of the cylinder. 

otherwise obtained result under 
consideration of a homogeneous 
polarization alone. 
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