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Abstract: - In this paper, a CMAC (cerebellar model 
articulation controller) neural network application on 
fault diagnosis for water circulation system is 
proposed. Firstly, we build a CMAC neural network 
based diagnosis system depending on the fault types. 
Secondly, the fault patterns, obtained from the China 
scholar’s technical data, would be employed to train 
the CMAC neural network off-line. Thirdly, the 
learning algorithm was developed to guarantee the 
learning convergence. Finally, combining the 
MATLAB program the trained neural network can be 
used to diagnose the possible fault types of water 
circulation system. Comparing with the traditional 
schemes, following advantages are obtained at 
least:(1)Eliminate the weights interference between 
different fault type patterns.(2) Improve the noise 
rejection ability.(3) Alleviate the dependency to 
expert’s expertise.(4) Memory size can be reduced by 
new excited addresses coding technique . (5) High 
learning and diagnosis speed. 
 
Keywords: water circulation system, neural network, 
fault diagnosis, CMAC 
 

1  Introduction  
Water circulation system is important equipment 

in industry application, including chemical 
engineering, refrigerator and air condition 
engineering and other like. Generally, water 
circulation system contains cooling water tower, 
filter, pump, motor sets, pipeline and spray tower. 
More than hundred of components effect the system 
operation. The maintenance of water circulation 
equipment strong depends on the expert’s 
experience. 

In past decade, many researchers used intelligent 
theorem to diagnose the incipient fault of mechanical 
and electrical equipments. Such as the fault diagnosis 
of power transformer using fuzzy logic [2-5], the 
expert system [6-7], and the neural network [8-11]. 
Also, the fault diagnosis of air-conditioning system 
and power system used the neural network theorem 

and had been demonstrated with better performance 
[12]. In the field of water circulation system, the 
scholars of mainland China proposed the multiple 
layer neural network schemes to diagnose the 
possible faults [1]. Some test results are obtained and 
it indeed demonstrated the intelligent scheme can 
replace the human judgment. However, the local 
minimum problem, slower leaning speed and the 
weights interference between different fault patterns 
are its major drawbacks. 

In order to solve the drawbacks described above, 
in this paper a novel CMAC neural network based 
methodology is presented to solve the fault diagnosis 
problem of water circulation system. Depending on 
the known fault types, the CMAC neural network 
(CMAC NN) diagnosis structure is built first. Next, 
we use the known fault patterns as the training data 
to train CMAC NN. Finally, the trained neural 
network can be used for to diagnose the fault types of 
water circulation system. The characteristics of 
association and generalization make the CMAC NN 
based diagnosis scheme a powerful, straightforward 
and accurate fault diagnosis.  

 
2  The CMAC fault diagnosis system 
of water circulation system 

Figure 1 shows the schematic of water 
circulation system and Fig. 2 shows the main 
measure signals which reflected the fault type of 
water circulation system. In accordance with the 
research of Dr. Feng [1], there are three major fault 
types about water circulation system, i.e. pump 
oppilation, machinery fault and pipeline oppilation. 
The fault patterns of [1] are list in Table 1. Based on 
previous researches [12] and Table 1, the 
configuration of proposed diagnosis system is shown 
in Fig. 3. In Table 1, 1nx denotes the normalized 
inlet pressure, 2nx  the outlet pressure, 3nx  the 
flow rate, 4nx  the motor current, and 5nx  the 
bearing temperature between pump and motor. Also, 
there are three major fault types, pump oppilation, 
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machinery fault and pipeline oppilation, denote as 
1nT , 2nT  and 3nT , respectively. 
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Figure 1. Schematic of water circulation system 
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 Figure 2. Schematic of pump operation for water 
 circulation system 

 
Table 1. The fault patterns of water circulation system 

Detected signals No.

1nx  2nx 3nx  4nx 5nx
Fault type(fault number

1 0.83 0.66 0.83 0.78 0.76 pump oppilation 

2 0.83 0.66 0.85 0.80 0.76 pump oppilation 

3 0.83 0.55 0.80 0.80 0.76 pump oppilation 

4 1.00 0.40 0.66 0.82 0.78 pump oppilation 

5 0.66 0.30 0.60 0.82 0.78 pump oppilation 

6 0.83 0.84 1.00 0.95 0.88 machinery fault 

7 0.83 0.84 1.00 0.98 0.93 machinery fault 

8 1.00 0.78 0.92 1.00 0.90 machinery fault 

9 0.66 0.66 0.83 0.98 0.98 machinery fault 

10 0.83 0.62 0.85 0.98 1.00 machinery fault 

11 0.50 0.84 0.66 0.82 0.76 pipeline oppilation 

12 0.20 0.66 0.60 0.84 0.78 pipeline oppilation 

13 0.66 0.95 0.60 0.85 0.79 pipeline oppilation 

14 0.66 1.00 0.50 0.90 0.78 pipeline oppilation 

15 0.66 1.00 0.66 0.85 0.78 pipeline oppilation 

Depending on the fault pattern of Table 1, the 
diagnosis structure of water circulation system is 
built as Fig. 3. The input layer with five input signals, 
memory layer with three parallel memory cells to 
memorize the individual fault characteristic, and 
three output nodes output the probability of each 
fault type. The operation steps include training mode, 
set the weight value to the memory cells via training; 
diagnosis mode, input the diagnosis data to diagnose 
the possible fault types. Details are illustrated as 
follows. 
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Figure 3. The configuration of water circulation           
diagnosis system using CMAC neural network 

 
2.1 Training mode 

As shown in Fig. 3, the three parallel memory 
layers are used to memorize the fault features. To 
avoid the learning interference, each memory layer 
just memorizes one fault characteristic. Therefore, in 
the beginning all the memory cells have zero weight 
value and we train it by learning rule in training 
mode. 

In training mode, the patterns of fault type i 
(i=1,2,3), shown in Table 1, are used to train the 
memory layer i which memorizes the feature of fault 
type i only. Input the fault patterns to the diagnosis 
system, via a series of mappings, including 
quantization, binary coding, segmentation, fired 
memory addresses coding and summation of the 
fired memory addresses weights, the CMAC will 
produce an output value. All the mapping processes 
just want to satisfy the characteristic of CMAC 
neural network, i.e. similar input will excite the 
similar memory cells (similar excited memory 
address). Assuming the output value is trained equal 
to 1 to denote a specific fault type, that is the node 
output 1 confirms what fault type is. All the patterns 
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of fault type i will input to the diagnosis system 
repeatedly to train the memory layer i until the 
learning convergence achieved. The mapping 
processes are summarized as follows.  

 
2.1.1 Quantization 

Firstly, the input signals are quantized to produce 
a quantization output. For example, Fig. 4 shows the 
input signal is quantized as 16 levels ( 16qmax = ) 
between the minimum value, minx , and maximum 
value, maxx . I.e. every detected signal will be 
quantized as 0 to 15. In Table 1, 1nx with minimum 
value 0.2 and maximum value 1.0. and the 
quantization output of 0.83 will be quantized as 12.  

 
2.1.2 Binary coding 

As described above, the quantization output can 
be expressed in four digits binary code, such as 12 
expressed as 1100b. In Table 1, the quantization 
outputs of first set of 1nx to 5nx  are 12, 8, 10, 0, 0 
respectively. Four digits binary expression is 1100b, 
0100b, 1010b, 0000b, 0000b. Concatenate the five 
binary value, we have the following binary series. 

 11000100101000000000b 
The most significant characteristic of CMAC 

NN is that similar inputs activate similar memory 
addresses. The fired memory addresses coding must 
satisfy this condition. Using the binary series is 
benefit to the following fired memory addresses 
coding and reduce the memory size. It is different to 
the traditional coding scheme.  

 
2.1.3 Segmentation, fired addresses coding and 

output mapping 
In segmentation operation, we take suitable bits 

as a segment (group) to generate the excited memory 
addresses. For example, take three bits as a segment 
and rewrite above series as follows. 

11000100101000000000b 
Then from LSB to MSB the excited memory address 
are coded as a1=000b=0, a2=000b=0, a3=000b=0, 
a4=101b=5, a5=100b=4, a6=000b=0, a7=11b=3. It 
implies the fired memory addresses number, A*, is 
seven. The features of the specific fault type will be 
distributed on the seven fired memory addresses. To 
add the weights of excited memory 
addresses, 0

1w , 0
2w , 0

3w , 5
4w , 4

5w , 0
6w , 3

7w , will produce 
the CMAC output. The output of CMAC can be 
expressed as 
 

∑
=

=
*A

1i

ai
iwy ,  i=1,…,A* (1) 

where j
iw  denotes the j-th addresses of group i. 
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maxxminx  

Fig.4. Quantization mapping diagram. 
 

2.1.4  Learning rule 
 Assuming the memory layer i (i=1,2,3) outputs 

1 denotes the fault type i is confirmed, then 1 can be 
thought as the teacher and the supervised leaning 
algorithm can be described as [9,12] 

*
da

)old(i
a

)new(i A
yy

ww ii
−

β+← , *A,...,2,1i =  (2) 

where ia
)new(iw are the new weight values after the 

weights tuning, ia
)old(iw  are the old weight values 

before weight tuning, and ai denotes the fired 
memory addresses, β the learning gain, 1yd =  the 
desired output.  
 
2.1.5  Learning convergence and performance 

evaluation 
 From [14], the convergence of a supervised 

learning algorithm can be guaranteed. Assuming the 
i-th (i=1,2,3) layer outputs one denotes the system 
has fault type i, and the number of training patterns is 

pN . Let the performance index be 

∑
=

−=
pN

1j

2
j )1y(E , (3) 

When ε<E  the training process will stop. ( ε is a 
small positive constant). 
 
2.2 Diagnosis mode 
 When the training mode is finished, the 
diagnosis system can be used to diagnose the fault 
type of water circulation system. Input the diagnosis 
data to the diagnosis system, the operations of 
CMAC NN are same as the training mode. But in 
diagnosis mode, the same fired memory addresses 
weights of every memory layer are summed up and 
each layer has one output value. If the input signal is 
same as the training patterns of fault type i, it will 
activate the same memory addresses of layer i and 
layer i’s output near one denotes the exactly fault 
type. But other layer’s output, generally, far away 
from 1 expresses low possibility of fault type j ( ij ≠ ). 
Multiple layers output near one value expresses 
multiple fault types happened. Therefore, the 
proposed diagnosis scheme suits to multiple faults 
diagnosis naturally. The software program flowchart 
is shown as Fig. 5. Other features of the proposed 
scheme are described as follows.  
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2.2.1 High noise rejection 
 The noise rejection ability can be illustrated as 
follows. Assuming the first fault type coding has 
following error or deviation (bold type). 

Original coding: 11000100101000000000b  
Error coding:   11000100101000000011b  

Then the fired up memory addresses, (a1,a2,a3,a4,a5, 
a6,a7) changed from (0,0,0,5,4,0,3) to (3,0,0,5,4,0,3), 
only the a1 is wrong. Since the fault feature is stored 
on eight different addresses, the output will preserve 
85% feature at least and the noise rejection ability 
can be obtained. 
 
2.2.2 Wrong diagnosis learning 
 If the diagnosis output is wrong, the detected 
data will be seem as a new pattern and the training 
mode describe above will be running again. 
 
2.2.3 Memory reduction 
 The needed memory size is related to the bit 
number of segment (m), maximum quantization level 
( maxq ) , the number of input signals(k), the total bit 
number of binary coding series(n) and the number of 
fault type (F). 
 It is easy to obtain the following relation. 

))1q((logceilkn max2 +⋅=  (4)  
Therefore, the total memory addresses totalM  is  

mm*
total 2F)m/n(ceil2FAM ⋅⋅=⋅⋅=  (5) 

and the optimal memory size (less) can be 
determined using following scheme. 

022ln
m
n2f)

m
n(

m
M mm

2
total =⋅⋅+⋅⋅−=

∂
∂

 (6) 

Let )2ln/1(ceilm = will have the least memory size. 
In fact, m=1 or 2 has the least memory size for the 
water circulation diagnosis system. This new fired 
memory address coding scheme reduces the memory 
size efficiently than the traditional method in [15]. 
However, an interesting phenomenon appears in our 
research, m is related to the convergence speed. 
More rigorous proof is still under studying.   
 
2.3 Diagnosis algorithm 
 Based on the configuration of Fig.1, the 
diagnosis algorithms are summarized as follows. 
2.3.1 Training mode 
step 1 Build the configuration of CMAC fault 

diagnosis system. It includes 5 input signals, 3 
parallel memory layers and 3 output nodes. 

step 2 Input the training patterns, through 
quantization, segmentation, fired memory 
addresses coding, and summation of fired 
memory addresses weights to produce the node 
output. 

step 3 Calculating the difference of actual output 
and the desired output ( 1Yd = ) and using 

equation (2) to update the weight values. 
step 4 Training performance evaluation. If ε<E , 

the training is finished. Save the memory 
weights. Otherwise, go to step 2. 

 
2.3.2 Diagnosis mode 
step 5 Load the up to date memory weights from 

the saved file. 
step 6 Input the diagnosed data. 
step 7 Quantization, segmentation, fired memory 

address coding, and summation of the fired 
memory weights using equation (1). 

step 8 Does the diagnosis correct? Yes, go to step 
9. Otherwise, go to step 2. 

step 9 Does the next data to be diagnosed? Yes, 
go to step 6. Otherwise, go to step11. 

step 10 Update the fired memory weights using 
equation (6). Go to step 9. 

step 11 Stop and save the up to date memory 
weights to file. 

 
3 Case study、discussions and diagnosis 
results 

To demonstrate the effectiveness of the 
proposed scheme, Table 2 shows the training and 
diagnosis output using the patterns of Table 1. 
Undoubtedly, it appears high accuracy and the 
training times just 5. In Table 3, we added -30% to 
30% noise to the original pattern as the diagnosis 
data (red bold type), high accuracy still obtained and 
the high noise rejection ability is guaranteed.  
 Fig. 6 shows the weights distribution plots of 
memory layers. Using CMAC scheme, the features 
of every fault type will be stored in memory cells just 
like the brain waves plot. In this study, we also try 
different bit number m, it related to the used memory 
size and the learning speed. Large memory size leads 
to fast learning speed. In real implementation, the 
engineer is easy to make decision depending on the 
system performance requirement. In on-line learning 
operation, the learning speed is the most significant 
factor and the larger memory size is inevitable; 
whereas in diagnosis apparatus design, the memory 
size affects the possibility of the proposed diagnosis 
algorithm and the engineer must evaluate the 
memory size first to match the chip device. 
 
4 Conclusion and future work 
    This work presents a novel CMAC-based fault 
diagnosis system for water circulation system. Using 
limited training patterns to train the CMAC neural 
network, like the brain of human being, each fault 
type feature is distributed and memorized on an 
assigned memory layer. When diagnosed data input 
the CMAC, the diagnosis system will output the 
possibility of all fault types. It provides useful 
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information to system fault diagnosis and 
maintenance. As the accumulation of training 
patterns and learning, the diagnosis system will 
become a more powerful and accurate diagnosis tool. 
The simulation results demonstrate the objectives of 
high diagnosis accuracy, multiple faults detection, 
suit to non-training data, and alleviate the 
dependency to expert’s expertise are obtained. 
However, the CMAC diagnosis scheme can be 
applied to other systems also. There are many 
applications are under research, such as image 
pattern recognition, disease diagnosis, etc. They will 
be presented in near future. Moreover, we also 
developed portable diagnosis apparatus using PIC 
microcontroller. Because of the pages limitation, it 
will appear in other journals. 
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Figure 5. Software flowchart of diagnosis program. 
 

 
Figure 6. Weights distribution plot 

 
Table 2. Diagnosis outputs of training pattern 

Fault pattern Node outputNO
. 1nx 2nx 3nx 4nx 5nx  1nT  2nT  3nT

Real 
fault 

 1 0.83 0.66 0.83 0.78 0.76 1.0006 0.6471 0.6496 1nT  

 2 0.83 0.66 0.85 0.80 0.76 1.0005 0.6471 0.6496 1nT  

 3 0.83 0.55 0.80 0.80 0.76 0.9942 0.4426 0.5208 1nT  

 4 1.00 0.40 0.66 0.82 0.78 1.070 0.4863 0.7360 1nT  

 5 0.66 0.30 0.60 0.82 0.78 0.9999 0.3303 0.8811 1nT  

 6 0.83 0.84 1.00 0.95 0.88 0.4498 1.0070 0.4089 2nT  

 7 0.83 0.84 1.00 0.98 0.93 0.5784 0.9928 0.5472 2nT  

 8 1.00 0.78 0.92 1.00 0.90 0.3343 1.0017 0.1818 2nT  

 9 0.66 0.66 0.83 0.98 0.98 0.3495 1.0067 0.2993 2nT  

 10 0.83 0.62 0.85 0.98 1.00 0.3685 0.9994 0.1175 2nT  

 11 0.50 0.84 0.66 0.82 0.76 0.7649 0.4127 1.0011 3nT  

 12 0.20 0.66 0.60 0.84 0.78 0.6837 0.3101 0.9948 3nT  

 13 0.66 0.95 0.60 0.85 0.79 0.5360 0.3745 1.0592 3nT  

 14 0.66 1.00 0.50 0.90 0.78 0.5338 0.2983 1.0197 3nT  

 15 0.66 1.00 0.66 0.85 0.78 0.5208 0.3745 0.9956 3nT  
 

Table 3. Diagnosis output with -30%~~30% noise 
Fault pattern node output No.

1nx 2nx 3nx 4nx 5nx 1nT  2nT  3nT  

real fault

 1 0.83 0.66 0.83 0.78 0.76 0.9256 0.6206 0.6023 1nT  

 4 1.00 0.40 0.66 0.82 0.78 1.0972 0.4599 0.7001 1nT  

 6 0.83 0.84 1.00 0.95 0.88 0.4498 1.0078 0.4089 2nT  

 7 0.83 0.84 1.00 0.98 0.93 0.6658 0.9663 0.5113 2nT  

 11 0.50 0.84 0.66 0.82 0.76 0.5806 0.4741 0.9007 3nT  

 12 0.20 0.66 0.60 0.84 0.78 0.6837 0.3101 0.9948 3nT  

noise 10% -10% 20% 30% -30%     
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