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Abstract: In this paper detection of sensor
faults in waste-water treatment plant by Gustafson-
Kessel fuzzy clustering algorithm is discussed and
presented. The main idea in the case of process
monitoring by the use of fuzzy clustering algo-
rithms is comparison between the fuzzy clusters for
a normal operation regime and the current behav-
ior. The detection of sensor faults was applied to
the simulation model of the waste-water treatment
plant, where the following measurements were ob-
tained: influent ammonia concentration, dissolved
oxygen concentration in the first aerobic reactor
tank, temperature, dissolved oxygen concentration
and the ammonia concentration in the second aero-
bic reactor. The results of fault detection based on
fuzzy model are shown and discussed.
Key-Words: fuzzy clustering, monitoring, fault de-
tection

1 Introduction

Process monitoring including fault detection and
diagnosis based on multivariate statistical process
control has been rapidly developed in recent years.
Model based techniques, expert systems and pat-
tern recognition have been widely used for fault
detection [1]. The appearance of a range of new
sensors and data gathering equipments has en-
abled data to be collected with greater frequency
from most chemical processes. Many statistical
techniques for extracting process information from
massive data and interpreting them have been de-
veloped in various field [2, 3]. We are dealing with
sensor faults detection in the simulated wastewa-
ter treatment plant. These types of plants are due
to their nature subjected to daily, weekly and sea-

sonal variation because of the temperature change,
rain and varying process load. The theoretical mod-
eling is in the case of wastewater treatment plant is
a really demanding task with questionable results.
Therefore, the methods of data mining are adopted
for statistical proces monitoring. The process of
wastewater treatment is highly nonlinear and needs
to be treated in a nonlinear way. In our case we
have applied a fuzzy clustering algorithm to pre-
process the data. The false alarms due to the non-
linear behavior of the plant are avoided (if com-
pared to the linear methods of detection which are
generally used) by the use of fuzzy model which
enables universal approximation of nonlinearities.

1.1 Fuzzy model based on Gustafson-
Kessel clustering

In this section the methods and algorithms ap-
plied to the analysis of the data will be presented.
The Gustafson-Kessel fuzzy clustering algorithm
will be explained and the Takagi-Sugeno fuzzy
model for wastewater treatment plant will be con-
structed and identified.

1.1.1 Gustafson-Kessel fuzzy clustering

The input data matrix is then given asX ∈ Rn×p.
The input data vector in the time instantk is de-
fined asxk = [xk1, . . . , xkp] , xk ∈ Rp. The set
of n observations is denoted asX = {xk | k =
1, 2, . . . , n}, and is represented asn× p matrix:

X =




x11 x12 . . . x1p

x21 x22 . . . x2p
...

...
...

...
xn1 xn2 . . . xnp


 (1)
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The main objective of clustering is to partition
the data setX into c subsets, which are called clus-
ters. The fuzzy partition of the setX is a family
of fuzzy subsets{Ai | 1 ≤ i ≤ c}. The fuzzy
subsets are defined by their membership functions,
which are implicitly defined in the fuzzy partition
matrix U = [µik] ∈ Rc×n. Thei-th row of matrix
U contains values of the membership function of
the i-th fuzzy subsetAi of data setX. The parti-
tion matrix satisfies the following conditions: the
membership degrees are real numbers from the in-
terval µik ∈ [0, 1] , 1 ≤ i ≤ c, 1 ≤ k ≤ n;
the total membership of eachsk in all the clusters
equals one

∑c
i=1 µik = 1, 1 ≤ k ≤ n; none of the

fuzzy clusters is empty nor it contains all the data
0 <

∑n
k=1 µik < n, 1 ≤ i ≤ c. This means that

the fuzzy partition matrixU belongs to the fuzzy
partition set which is defined as:

M = {U ∈ Rc×n | µik ∈ [0, 1] , ∀i, k;
c∑

i=1

µik = 1, ∀k; 0 <

n∑

k=1

µik < n, ∀i}. (2)

In our application the fuzzy partition matrix is
obtained by applying the fuzzy c-means algorithm
based on the Mahalanobis distance norm. The al-
gorithm is based on the minimization of the fuzzy
c-means functional given as:

J(X, U, V ) =
c∑

i=1

n∑

k=1

(µm
ik) d2

ik, (3)

where U is the fuzzy partition matrix ofX,
the vector of cluster prototypes (centers)V =
[v1, v2, . . . , vc] , vi ∈ Rp, which have to be de-
termined, and

d2
ik = (xk − vi)

T Ai (xk − vi)

is the inner-product distance norm, where

Ai = (ρidet (Ci))
1/p C−1

i

whereρi = 1, i = 1, ..., c and p is equal to the
number of measured variables and whereCi is the
fuzzy covariance matrix of theith cluster defined
by

Ci =
∑n

k=1 µm
ik (xk − vi) (xk − vi)

T

∑n
k=1 µm

ik

This allows the detection of hyper-ellipsoidal clus-
ters in the distribution of the data. If the data are

distribution along the nonlinear hyper-surface, the
algorithm will find the clusters that are local lin-
ear approximations of this hyper-surface. The clus-
ter overlapping is defined by the parameterm ∈
[1,∞).

The number of clusters is defined by using the
cluster validity measure or by iterative merging or
insertion of the clusters. The overlapping factor or
the fuzziness parameterm influences the fuzziness
of the resulting partition; from the hard (m = 1) to
the partition which is completely fuzzy (m →∞).
In our approach the standard valuem = 2 is used.

1.1.2 Gustafson-Kessel algorithm

For the given data setX, the number of clusters
c, the chosen weighting exponentm > 1 and the
algorithm termination toleranceεend > 0 the algo-
rithm will be the following:

• initialization

Initialization of fuzzy partition matrix:U ∈
M (randomly). Initialization of epoch:r = 0.

• repeat
r = r + 1

computation of the cluster centers:

v
(r)
i =

∑n
k=1

(
µ

(r)
ik

)m
xk

∑n
k=1

(
µ

(r)
ik

)m , 1 ≤ i ≤ c. (4)

computation of the cluster covariance ma-
trices and inner-product distance norm:

Ci =
∑n

k=1 µm
ik (xk − vi) (xk − vi)

T

∑n
k=1 µm

ik

, (5)

Ai = (ρidet (Ci))
1/p C−1

i , 1 ≤ i ≤ c (6)

computation of the distance from the clus-
ter centers

d2
ik =

(
xk − v

(r)
i

)T
Ai

(
xk − v

(r)
i

)
,

1 ≤ i ≤ c, 1 ≤ k ≤ n (7)

update of the partition matrix :

if dik > 0, µ
(r)
ik =

1
∑c

j=1

(
dik
djk

) 2
m−1

(8)

• until ||U (r) − U (r−1)|| < εend
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1.1.3 The fuzzy model in TS form

The fuzzy model, in Takagi-Sugeno (TS) form, ap-
proximates the nonlinear system by smoothly in-
terpolating affine local models. Each local model
contributes to the global model in a fuzzy sub-
set of the space characterized by a membership
function. We assume a set of input vectorsX =
[x1, x2, . . . , xn]T and a set of corresponding out-
puts which is defined asY = [y1, y2, . . . , yn]T .

A typical fuzzy model is given in the form of
rules

Ri : if xk is Ai then ŷk = φi(xk)
i = 1, . . . , c (9)

The vectorxk denotes the input or variables in
premise, and the variablêyk is the output of the
model at time instantk. The premise vectorxk is
connected to one of the fuzzy sets (A1, . . . , Ac) and
each fuzzy setAi (i = 1, . . . , c) is associated with
a real-valued functionµAi(xk) or µik : R→ [0, 1],
that produces the membership grade of the variable
xk with respect to the fuzzy setAi. The func-
tions φi(·) can be arbitrary smooth functions in
general, although linear or affine functions are nor-
mally used.

The model output in Eq. (9) is now described in
closed form as follows:

ŷk =
∑c

i=1 µikφi(xk)∑c
i=1 µik

(10)

To simplify Eq. (10), a partition of unity is con-
sidered where the functionsβi(xk), defined by

βi(xk) =
µik∑c
i=1 µik

, i = 1, . . . , c (11)

give information about the fulfilment of the respec-
tive fuzzy rule in the normalized form. It is obvious
that

∑c
i=1 βi(xk) = 1 irrespective ofxk as long as

the denominator ofβi(xk) is not equal to zero (this
can be easily prevented by stretching the member-
ship functions over the whole potential area ofxk).
Combining Eqs. (10) and (11) we arrive at the fol-
lowing equation:

ŷk =
c∑

i=1

βi(xk)φi(xk), k = 1, . . . , n (12)

Very often, the output value is defined as a linear
combination of consequence states

φi(xk) = xkθi, i = 1, . . . , c,

θT
i =

[
θi1, . . . , θi(p+q)

]
(13)

The vector of fuzzified input variables at time in-
stantk is written as

ψk = [β1(xk)xk, . . . , βc(xk)xk] , k = 1, . . . , n

and then the fuzzified data matrix follows as:

ΨT =
[
ψT

1 , ψT
2 , . . . , ψT

n

]
(14)

If the matrix of the coefficients for the whole
set of rules is written asΘT =

[
θT
1 , ..., θT

c

]
, then

Eq. (12) can be rewritten in the matrix form

ŷk = ψkΘ (15)

and the compact form which describes the relation
from the whole set of data becomes

Ŷ = ΨΘ (16)

whereŶ stands for the vector of model outputsŷk

wherek = 1, . . . , n (Ŷ = [ŷ1, ŷ2, . . . , ŷn]T ) .
The fuzzy model in the form given in Eq. (15)

is referred to as the affine Takagi-Sugeno model
and can be used to approximate any arbitrary func-
tion with any desired degree of accuracy [4, 5,
6]. The generality can be proven with the Stone-
Weierstrass theorem [7] which suggest that any
continuous function can be approximated by a
fuzzy basis function expansion [8].

1.1.4 Estimation of fuzzy model parameters

The estimation of the fuzzy model parameters will
be done using the least square error approach. The
measurements satisfy the nonlinear equation of the
system

yi = g(xi), i = 1, . . . , n (17)

According to the Stone-Weierstrass theorem , for
any given real continuous functiong on a compact
setU c ⊂ Rp and arbitraryδ > 0 , there exist a
fuzzy systemf such that

max
xi∈X

|f(xi)− g(xi)| < δ, ∀i (18)

This implies the approximation of any given real
continuous function with a fuzzy function from
classFp defined in Eq. (15). However, it has to
be pointed out that lower values ofδ imply higher
values ofc that satisfy Eq. (18). In the case of the
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approximation, the error between the measured val-
ues and the fuzzy function outputs can be defined
as

ei = yi − f(xi) = yi − ŷi, i = 1, ..., n (19)

whereyi stands for the measured output andŷk for
the model output at time instantk. To estimate the
optimal parameters of the proposed fuzzy function
(Θ) the minimization of the sum of square errors
over the whole input set of data is performed as

E =
n∑

i=1

e2
i = (Y − Ŷ )T (Y − Ŷ ) =

= (Y −ΨΘ)T (Y −ΨΘ) (20)

.
The parameterΘ is obtained as∂E

∂Θ = 0 and be-
comes

Θ =
(
ΨT Ψ

)−1
ΨT Y

.
The idea of an approximation can be interpreted

as the most representative fuzzy function to de-
scribe the domain of outputsY as a function of
inputsX. This problem can also be viewed as a
problem of data reduction, which often appears in
identification problems with large data sets.

2 Biological waste-water treatment pro-
cess

Waste-water treatment plants are large nonlin-
ear systems subject to large perturbations in flow
and load, together with uncertainties concerning
the composition of the incoming wastewater. The
simulation benchmark has been developed to pro-
vide an unbiased system for comparing various
strategies without reference to a particular facil-
ity. It consists of five sequentially connected re-
actors along with a 10-layer secondary settling
tank. The plant layout, model equations and con-
trol strategy are described in detail on the www
page (http://www.ensic.u-nancy.fr/costwwtp). In
our approach the layout was formed where the
wastewater is purified in the mechanical phase and
after this phase the moving bed bio-film reactor
is used. Schematic representation of simulation
benchmark is shown in Fig. 1. The detection of
sensor faults was applied to the simulation model
where the following measurements were used to
calculate the fuzzy clusters and fuzzy model: in-
fluent ammonia concentration in the inflowQin

ANOXIC TANKS

AERATION TANKS

Qin

Qair

Qw

Qout

Fig. 1: Schematic representation of simulation
benchmark

defined asCNH4N in , dissolved oxygen concentra-
tion in the first aerobic reactor tankC1

O2
, dissolved

oxygen concentration in the second aerobic reac-
tor tankC2

O2
and the ammonia concentration in the

second aerobic reactor tankCNH4Nout . The fuzzy
model was build to model the relation between the
ammonia concentration in the second aerobic reac-
tor tank and the other measured variables:

CNH4Nout(k) = G (
CNH4N in(k), C1

O2
(k), C2

O2
(k)

)
(21)

whereG stands for nonlinear relation between mea-
sured variables. First 15000 measurements (sam-
pling timeTs = 120s) were used to find the fuzzy
clusters and to estimate the fuzzy model parame-
ters. At the measurement 17000 the slowly increas-
ing sensor fault occur, which is than at time 18000
eliminated. This means that sensor to measure the
ammonia concentration in the second aerobic reac-
tor tankCNH4Nout is faulty. The signal with expo-
nentially increasing value was added to the nominal
signal. The whole set of measurements is shown
in Fig. 2. The fuzzy model is obtained on the set
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Fig. 2: The whole set of measurements

of first 15000 samples. The fuzzy model output
ĈNH4Nout and the process outputCNH4Nout are
shown in Fig. 3. The fault detection index is de-
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Fig. 3: The verification of fuzzy model

fined as:

f =

(
CNH4Nout − ĈNH4Nout

ĈNH4Nout

)2

(22)

The fault tolerance index is defined as relative de-
gree of maximal value of fault detection index in
the identification or learning phaseftol = γ max f
where in our caseγ = 1.5. This means that the
fault detection index becomes (ftol = 0.15). The
fault which occur at the sample 17000 is detected
at the sample 17556. The detection is delayed, but
this is usual when the faults are slowly increasing.
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Fig. 4: The fault detection index, the fault tol-
erance index and the actual and detected fault

3 Conclusion

In this paper detection of sensor faults in
wastewater treatment plant is discussed. It is real-
ized by the use of fuzzy model which is obtained by

Gustafson-Kessel fuzzy clustering algorithm. The
detection of sensor fault was applied to the sim-
ulation model where the following measurements
were used to calculate the fuzzy clusters: influent
ammonia concentration, dissolved oxygen concen-
tration in the first aerobic reactor tank, tempera-
ture, dissolved oxygen concentration and the am-
monia concentration in the second aerobic reactor.
The sensor fault on the sensor of the ammonia con-
centration in the second aerobic reactor has been
detected without false alarms and with small time-
delay because of the fault nature.
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