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Abstract: In this paper detection of sensosonal variation because of the temperature change,
faults in waste-water treatment plant by Gustafsorain and varying process load. The theoretical mod-
Kessel fuzzy clustering algorithm is discussed amding is in the case of wastewater treatment plant is
presented. The main idea in the case of proceseeally demanding task with questionable results.
monitoring by the use of fuzzy clustering algoTherefore, the methods of data mining are adopted
rithms is comparison between the fuzzy clusters ffor statistical proces monitoring. The process of
a normal operation regime and the current behavastewater treatment is highly nonlinear and needs
ior. The detection of sensor faults was applied to be treated in a nonlinear way. In our case we
the simulation model of the waste-water treatmelnave applied a fuzzy clustering algorithm to pre-
plant, where the following measurements were oprocess the data. The false alarms due to the non-
tained: influent ammonia concentration, dissolvdidear behavior of the plant are avoided (if com-
oxygen concentration in the first aerobic reactpared to the linear methods of detection which are
tank, temperature, dissolved oxygen concentratiganerally used) by the use of fuzzy model which
and the ammonia concentration in the second aeesables universal approximation of nonlinearities.
bic reactor. The results of fault detection based on

fuzzy model are shown and discussed. 1.1 Fuzzy model based on Gustafson-
Key-Words: fuzzy clustering, monitoring, fault de-  Kessel clustering
tection

In this section the methods and algorithms ap-
plied to the analysis of the data will be presented.
The Gustafson-Kessel fuzzy clustering algorithm

will be explained and the Takagi-Sugeno fuzzy

Process monitoring including fault detection ang, je| for wastewater treatment plant will be con-
diagnosis based on multivariate statistical Process  cted and identified.

control has been rapidly developed in recent years.
Model basepl_ techniques, expgrt systems and pﬁtl_.l Gustafson-Kessel fuzzy clustering
tern recognition have been widely used for fau

detection [1]. The appearance of a range of néWe input data matrix is then given a6 € R™*?,

sensors and data gathering equipments has €he input data vector in the time instahtis de-

1 Introduction

abled data to be collected with greater frequenfified asxz; = [xk1,..., 2], 2 € RP. The set
from most chemical processes. Many statisticall n observations is denoted & = {z; | k =
techniques for extracting process information from 2, ... n}, and is represented asx p matrix:
massive data and interpreting them have been de-

veloped in various field [2, 3]. We are dealing with i L1z Lip

sensor faults detection in the simulated wastewa- - _ Lo1 X2 ... L2p (1)
ter treatment plant. These types of plants are due : : : :

to their nature subjected to daily, weekly and sea- Tnl  Tno T
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The main objective of clustering is to partitiomistribution along the nonlinear hyper-surface, the
the data seK into c subsets, which are called clusalgorithm will find the clusters that are local lin-
ters. The fuzzy partition of the séf is a family ear approximations of this hyper-surface. The clus-
of fuzzy subsetd 4; | 1 < i < ¢}. The fuzzy ter overlapping is defined by the parameter <
subsets are defined by their membership functiofis,co).
which are implicitly defined in the fuzzy partition The number of clusters is defined by using the
matrix U = [u;x] € Re*™. Thei-th row of matrix cluster validity measure or by iterative merging or
U contains values of the membership function afsertion of the clusters. The overlapping factor or
thei-th fuzzy subsetd; of data setX. The parti- the fuzziness parameter influences the fuzziness
tion matrix satisfies the following conditions: thef the resulting partition; from the hareh(= 1) to
membership degrees are real numbers from thetine partition which is completely fuzzy{ — o).
terval i, € [0,1], 1 < i < ¢ 1 < k < n; Inourapproach the standard value= 2 is used.
the total membership of each in all the clusters

equals ong i, p;x =1, 1 <k <n;noneofthe 112 Gustafson-Kessel algorithm

fuzzy clusters is empty nor it contains all the data _
0< Y7 px <n, 1<i<ec This means that For the given data seX, the number of clusters

the fuzzy partition matrix/ belongs to the fuzzy & the chosen weighting exponemt > 1 and the
partition set which is defined as: algorithm termination tolerancg,,4 > 0 the algo-
rithm will be the following:

_ cxXn . . .
M =A{U R | py € [0,1], Vi, k; « initialization

D wik =19k 0 <> g <n, Viy. (2 Initialization of fuzzy partition matrix:U €

i=1 k=1 M (randomly). Initialization of epoch: = 0.

In our application the fuzzy partition matrix is
obtained by applying the fuzzy c-means algorithm
based on the Mahalanobis distance norm. The al- _
gorithm is based on the minimization of the fuzzy ~ computation of the cluster centers
c-means functional given as: m

n (r)
() _ 2=t () "o

e repeat
r=r+1

¢ n ) o = Gy L<i<e (4)
JXOV) =33 W dh, @) i (1)
=1 k=1
where U is the fuzzy partition matrix ofX, computation of the cluster covariance ma-
the vector of cluster prototypes (centef€) = trices and inner-product distance norm:
[vi,v2,...,v.], v; € RP, which have to be de- T
termined, ar:d ‘ C; = 22:1 :u?l; («Tk - Ui) («Tk - Ui) (5)

> k1 Hip ’

d? = (z —viTAi TE — U;

is the inner-product distance norm, where ) ]
computation of the distance from the clus-

A; = (pidet (C;))M/P ! ter centers
T

wherep;, = 1,5 = 1,...,c andp is equal to the a2, = (a;k - UET)) A; (a:k - U§T)> :
number of measured variables and whéfes the 1<i<e¢ 1<k<n (7)
fuzzy covariance matrix of théh cluster defined
by update of the partition matrix :

En m ] N\T . (r) 1

O, = 2eh=1Fi (zk — vi) (w — v3) if dig >0, py = o\ e ®
T 5 ()

This allows the detection of hyper-ellipsoidal clus- _ )
ters in the distribution of the data. If the data are ® until [[UT) — UC=D|| < eqpq
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1.1.3 The fuzzy model in TS form 0F = [0i1, .-, 0i(psg)) (13)

The fuzzy model, in Takagi-Sugeno (TS) form, 8prhe vector of fuzzified input variables at time in-
proximates the nonlinear system by smoothly iQzant is written as

terpolating affine local models. Each local model

contributes to the global model in a fuzzy sub-y, — (8, (x4)zs, ..., Boler)za], k= 1,....n
set of the space characterized by a membership

function. We assume a set of input vectdfs= and then the fuzzified data matrix follows as:
[21,%2,...,2,)" and a set of corresponding out-

puts which is defined 8§ = [y, yo, .. ., yn]”. A A T (14)

A typical fuzzy model is given in the form of
rules If the matrix of the coefficients for the whole

set of rules is written a®” = [67,...,0]], then
Ri: if xy is A; then g, = ¢i(xy) Eq. (12) can be rewritten in the matrix form
i=1,...,c (9)

The vectorz, denotes the input or variables in Ok = Uk (13)
premise, and the variablg, is the output of the and the compact form which describes the relation
model at time instant. The premise vectar; is from the whole set of data becomes

connected to one of the fuzzy setf((. . ., A.) and

each fuzzy se#l; (i = 1,...,c) is associated with Y = 0O (16)
areal-valued functiop 4, (zx) or u, : R — [0, 1], R

that produces the membership grade of the variaslBereY” stands for the vector of model outpuls

21, with respect to the fuzzy set;. The func- wherek =1,....,n (Y = [j1,92, -, ") -

tions ¢;(-) can be arbitrary smooth functions in The fuzzy model in the form given in Eq. (15)
general, although linear or affine functions are nds referred to as the affine Takagi-Sugeno model

mally used. and can be used to approximate any arbitrary func-
The model output in Eq. (9) is now described itlon with any desired degree of accuracy [4, 5,
closed form as follows: 6]. The generality can be proven with the Stone-
c Weierstrass theorem [7] which suggest that any
Ui = Zizlfik@(x’“) (10) continuous function can be approximated by a

2 i1 Mik fuzzy basis function expansion [8].

To simplify Eg. (10), a partition of unity is con-
sidered where the functiort(z;,), defined by 1.1.4 Estimation of fuzzy model parameters

Bi(zy) = 6“7““7 i=1,...,c (11) The estimation of the fuzzy model parameters will
i1 Hik be done using the least square error approach. The

give information about the fulfilment of the respecl€asurements satisfy the nonlinear equation of the
tive fuzzy rule in the normalized form. Itis obviou$YStem

that> ¢, Gi(zx) = 1 irrespective ofr; as long as yi=g(z;), i=1,....n 17)
the denominator off;(z) is not equal to zero (this ccording to the Stone-Weierstrass theorem , for
can be easily prevented by stretching the membgﬁy given real continuous functignon a compact

shipfu_n_ctions over the whole potentigl areap). getpe ¢ RP and arbitraryd > 0 , there exist a

Cor_nbmmg E_qs. (10) and (11) we arrive at the foﬁlzzy systemf such that

lowing equation:

¢ max | f(zi) = g(z:)] <o, Vi (18)

i=1 This implies the approximation of any given real
Very often, the output value is defined as a line§Pntinuous function with a fuzzy function from
combination of consequence states classF? defined in Eq. (15). However, it has to
be pointed out that lower values &fimply higher

di(xg) =x0;, i=1,...,c, values ofc that satisfy Eq. (18). In the case of the
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approximation, the error between the measured val-

ues and the fuzzy function outputs can be defined

as R

ANOXIC TANKS

A

‘ Q..

TITTTT|LITTITTT

e =1y — f(xl) =y — gi7 7 = 17 e (19) AERATION TANKS | Q.

wherey; stands for the measured output @ndor  rig 1: Schematic representation of simulation
the model output at time instaht To estimate the ya,chmark

optimal parameters of the proposed fuzzy function
(©) the minimization of the sum of square errors

over the whole input set of data is performed as defined a&'nray;,, dissolved oxygen concentra-
tion in the first aerobic reactor tamkéQ, dissolved

oxygen concentration in the second aerobic reac-

tor tankC3, and the ammonia concentration in the

second aerobic reactor tafkyg4n,,,. The fuzzy

model was build to model the relation between the

) ammonia concentration in the second aerobic reac-
The paramete® is obtained a% — 0 and be- tor tank and the other measured variables:

comes

E:iegz(y—?)T(y—?):
i=1

= (Y -ve)l(y —ve) (20)

o= (v'y) vy CONHAN it (k) = G (CNan,, (k), C5, (K), C%Ez(li?)))

' , o _ whereg stands for nonlinear relation between mea-

The idea of an approximation can be interpreteg o variables. First 15000 measurements (sam-
as _the most rep_resentatlve fuzzy funcUo_n to dﬁl‘lng time T, = 120s) were used to find the fuzzy
scribe the domain of outputs as a function of ¢ ,ters and to estimate the fuzzy model parame-
inputs X This problem can also be viewed as @5 't the measurement 17000 the slowly increas-
problem of data reduction, which often appears jf, sensor fault occur, which is than at time 18000
identification problems with large data sets. eliminated. This means that sensor to measure the
ammonia concentration in the second aerobic reac-
tor tankCn 4w, 1S faulty. The signal with expo-
nentially increasing value was added to the nominal

Waste-water treatment plants are large nonliﬁ'-gg_al' 2Th_|(_ahwl;ole set O; Tgasgre_megts |shshown
ear systems subject to large perturbations in fidil F19- 2. The fuzzy model is obtained on the set

and load, together with uncertainties concernir~

2 Biological waste-water treatment pro-
cess

the composition of the incoming wastewater. Tt - 10 ‘ ‘ ‘ ‘ ‘
simulation benchmark has been developed to p & ‘j=/\/ e AT
. . . . 0 0.5 1 15 2 25 3
vide an unbiased system for comparing variol Time 1o
strategies without reference to a particular fac . "~ S ]
ity. It consists of five sequentially connected re % e - e s e s
actors along with a 10-layer secondary settlir o ‘ ‘ e ‘ o
tank. The plant layout, model equations and co «¢" s, /\_ /" \__ ~—— S\ /SN
trol strategy are described in detail on the ww % 05 1 15 2 25 3
. Time 4
page (http://www.ensic.u-nancy.fr/costwwtp). | .5 ‘ ‘ ‘ ‘ X
our approach the layout was formed where tl 2 zh/\_/pm/w
wastewater is purified in the mechanical phase a 0 0s ! L 2 28 3

x 10

after this phase the moving bed bio-film react

is used. Schematic representation of simulation

benchmark is shown in Fig. 1. The detection of Fig. 2. The whole set of measurements
sensor faults was applied to the simulation model

where the following measurements were used ab first 15000 samples. The fuzzy model output
calculate the fuzzy clusters and fuzzy model: im’;‘NH4Nwt and the process outpdiyan,,, are
fluent ammonia concentration in the inflog;, shown in Fig. 3. The fault detection index is de-
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Gustafson-Kessel fuzzy clustering algorithm. The

detection of sensor fault was applied to the sim-

ulation model where the following measurements

were used to calculate the fuzzy clusters: influent

ammonia concentration, dissolved oxygen concen-
tration in the first aerobic reactor tank, tempera-

ture, dissolved oxygen concentration and the am-
monia concentration in the second aerobic reactor.
The sensor fault on the sensor of the ammonia con-
centration in the second aerobic reactor has been
detected without false alarms and with small time-

o 5000 10000 w0 delay because of the fault nature.

Time

10

C_{{NH4N}_{out}} (-), \hat{C}_{{NH4N}_{out}} (—-)

Fig. 3: The verification of fuzzy model References
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In this paper detection of sensor faults in
wastewater treatment plant is discussed. It is real-
ized by the use of fuzzy model which is obtained by



