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Abstract: Switched controllers can often outperform traditional adaptive control. The paper starts with a brief
overview of the development of the field of switched controllers. After that, it describes an original control
architecture based on controller and estimator switching. This architecture uses state-feedback control with
switched controllers to cope with controlled system dynamics changes. If conventional observer were used to
estimate the unmeasurable state variables, the control performance would deteriorate because the estimation
results could be corrupted by disturbances acting at various points of the controlled system. To overcome this
problem, the proposed architecture includes also a bank of switched estimators. Each of these estimators is
tuned for a specific input point of a disturbance. Switching logic is used to select the most suitable estimator that
yields the most reliable estimate in any particular control situation. A considerable deal of attention is devoted
to extensive testing of the proposed architecture using computer simulation. The testing results are promising.
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1. Introduction

In many practical situations, the controller design is
complicated by considerable modelling uncertainties,
system parameters changes, non-linearities and large
unmeasurable disturbances. There are some classical
solutions to this kind of problems. The aim of the
robust control design methodology is to design
controller that achieves a specified level of
performance under any uncertainty from the assumed
uncertainty set. However, if the uncertainty set is too
large, the controller becomes very conservative with
unacceptably sluggish nominal responses.

Another classical solution is adaptive control. In
this approach, the controller is selected on the basis
of the current estimate of the uncertain process and
this selection is done over a continuously
parameterized family of candidate controllers.
Adaptive control can be used even if uncertainty is
large and robust control design tools are inapplicable.
However, this approach also has some well known
inherent limitations. In particular, if unknown
parameters enter the process model in a complicated
way, it may be difficult to construct a continuously
parametrized family of candidate controllers.
Moreover, on-line identification of process model
over a continuum may also be a difficult problem.
Thus, the design of adaptive control algorithms may
be fairly complicated and the final success will often
depend on trial and error.

In this paper, we will focus on an alternative

approach that seeks to overcome some of the above
mentioned problems. Its main distinguishing feature
is that controller selection is done using suitable
switching logic not by continuous tuning.

2. Switching control

Unlike adaptive control, which can be considered
a classical field of the control theory, the use of
switched controllers is a relatively new idea.
Although its origins can be traced back to the
eighties (the pioneering work is by Mårtensson [6],
another important early paper is [1]), most papers on
switched controllers have been published during the
last decade. Because of the hybrid (mixed
continuous/logical) structure of the control system,
switched controllers can be studied within a more
general framework of hybrid control.

The algorithms proposed in the early papers used
a very simple switching mechanism. They were
based on a sequential or “pre-routed ”search among a
set of candidate controllers. This blind search of an
acceptable controller is time consuming and as a
result of it, the control performance (in particular the
transient behaviour) of such controllers is poor.

Considerably better results can be achieved with
switching algorithms that evaluate online the
potential performance of each candidate controller
and use this to direct their search. These algorithms
can further be divided into two main categories:
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switching algorithms based on process estimation
and algorithms based on a direct performance
evaluation of each candidate controller.

The first category of algorithms can be
represented e.g. by references [7], [8] and [5]. Its
principle can briefly be explained in the following
way. The switching algorithm (supervisor)
continuously compares the behaviour of the process
with the behaviour a several admissible process
models in order to determine which model is more
likely to describe the actual process. The decision is
based on the estimation errors achieved with
respective models. The model with smallest
estimation error is regarded as an “estimate ”of the
actual process and the supervisor places in the loop
the candidate controller that is the most adequate one
for this estimated model. Thus, the structure of an
estimator-based supervisor consists of a multi-
estimator responsible for evaluating which
admissible model best matches the process and a
decision logic that selects which candidate controller
should be used.

Algorithms based on direct performance
evaluation can be characterized by the fact that the
supervisor attempts to assess directly the potential
performance of every candidate controller, without
trying to estimate the model of the process. To
achieve this, the supervisor computes certain
performance signals, that provide a measure of how
well each of the candidate controllers Cn would
perform in a conceptual experiment in which the
actual control signal u would be generated by Cn as a
response to the measured process output y. This type
of supervision is inspired by the idea of controller
falsification introduced in [10]. The structure of this
kind of supervisor includes a performance monitor
that generates the performance signals and a decision
logic that selects which candidate controller should
be used. This approach is the relatively less used one.
An example of a paper using this approach is [9].

In the sequel, we will basically follow the
approach based on process estimation. However, the
standard algorithm that makes the selection among
different controllers in response to the controlled
system dynamics changes will be augmented with
another feature. If the controller uses state feedback,
it is necessary not only to estimate which of the
process models is the most appropriate one but it is
also necessary to estimate the unmeasurable state
variables. If conventional observer were used to
estimate these unmeasurable state variables, the
control performance would deteriorate because the
estimation results can be corrupted by disturbances
acting at various points of the controlled system
(disturbance at system input or output, disturbance

acting at some other point of the controlled system).
To overcome this problem, the proposed architecture
includes also a bank of switched estimators. Each of
these estimators is tuned for a specific input point of
a disturbance. Switching logic is extended so that it
could select the most suitable estimator that yields
the most reliable estimate in any particular control
situation.

3. Control system architecture

The basic structure of the control system is
shown in Fig. 1. A very simple set of candidate
controllers is used for the sake of explanation. It
includes only two controllers for two nominal models
of the controlled system. However, extension to a
larger set is straightforward. A bank of estimators
tuned for different kinds of disturbances is associated
with each controller. The following disturbances are
considered: dIN disturbance acting at system input,
dOUT  disturbance at system output, dARX, dARMAX

general disturbances acting anywhere in the system
described by ARX or ARMAX model.

The discrete integrators (1/(1-z-1)) are added to
the basic state feedback structure in order to prevent
steady state errors. The state feedback controllers are
tuned for corresponding nominal models according to
quadratic performance criterion
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Fig. 1. The structure of the control system with
switched controllers and switched incremental
estimators.
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where x1  is vector of measurable state variables,
x2  is vector of not measurable state variables, dS  is

a disturbance (dS =dIN, dARX, dARMAX,  dOUT, otherwise
dS = 0). Estimators are described by
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where EE x,x 21 ∆∆ are the state variables of the

estimator, corresponding to the time increments of

the controlled system state variables, Sd
~

∆ - the input

disturbance, which is estimated by means of the

estimator ( Sd
~

∆  = 1−
SM εs , MS  = BS1, for Sd

~
= dIN ,

dARMAX otherwise Sd
~

∆ = 0)

The block with the incremental estimators of the
type EARX, EARMAX, EIN and EOUT, which also model
the controlled system in the nominal regimes, is
connected to the output of the controlled system and
forms input to the controller. The estimators are
tuned for the types of the expected disturbances ds
inputs. The information about the step disturbance
input is estimated by means of the matrix M (see
Fig. 1) from the estimators error εs and it is
transferred further into the estimator by means of the
corrective feedback (some further results regarding
the structure of these estimators were published by
the authors in [2] and [3]).

The maximum number of disturbances entering
the controlled system simultaneously in one group is
equal to the number of the measurable state variables.
The number of such groups is unlimited. The
estimator error is also used to estimate, which
nominal model tuned in the block of the estimators is
closest to the current behaviour of the controlled
system. If discrete controller is used, the estimator
yields the estimate of all unmeasurable state
variables. Every estimator of every nominal block is
connected permanently to the measurable output of
the controlled system and its error εs is evaluated.
The estimator operates either in its nominal functions
(e.g. EIN, EARMAX, EOUT) or it is switched over in the
EARX function. It is switched into the control
operation, if it is evaluated as the most suitable one
(after the evaluation of its error εs). The strategy of
the estimators switching aims at reaching the smallest
value of the estimators errors εs as fast as possible.
The switching algorithm is realized by means of the
logic functions.

4. Testing experiments

The following controlled system was used for testing
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where K is integer coefficient that parametrizes
nominal models. Now only two nominal regimes are
considered for simplicity (K = 1,2).
The corresponding discrete time transfer functions
with the sampling interval ∆T = 0.2s are
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for  K = 1 and
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for K = 2.

The discrete integrators are combined with the
description of the controlled system
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where x1  is vector of  controlled state variables,  x2
is vector of not controlled state variables.
The description (7) is augmented with state variables

0x  of the integrators (see Fig.2a)
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The proposed hybrid control structure was tested
with  the discretized model ((5) and (6)) of the real
continuous system (4). Parameter K of the model can
be changed. The output controlled variables Sy  of
the model are connected permanently to the
estimators (EARX

 , EIN, EOUT), witch are tuned for the
step disturbances (dARX, dIN, dOUT). Control system
switches over the estimator functions (EIN ↔  EARX,
EOUT ↔  EARX) and connects the estimator to the
controller and the controller to the disrete integrator.

The control performance was tested with
different values of K and different step disturbance
inputs in the controlled system. The responses are
compared with the control responses of a controlled
system with all state variables measurable. The
controllers of both control systems are equally tuned
according to the performance criterion (1) and to the
parameter K of the controlled system. Every single
test is carried out for one nominal regime of the
controlled system (K = 1 or K = 2) and for one-step
disturbance (dIN, dOUT and w) in the time 1s. The test

includes the responses of 
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are in Fig. 3 to Fig.14.
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5. Conclusion

A novel hybrid control architecture based on
controller and estimator switching was described and
tested using the computer simulation with a model of
linear multivariable fourth order system with two
nominal models. The control system consists of two
blocks with the estimators tuned for the expected
disturbances (dIN, dOUT, dARX), each block with one of
the nominal transfer functions. The value of the
disturbances is evaluated from the estimator errors in
the first sampling instant (using matrix M). The type
of the disturbance and the nominal model of the
controlled system are estimated in the second
sampling instant by means of the comparison of the
estimator output and of the response of the controlled
system. The reference value w changes are controlled
without error by means of the estimator of any type.
The error values from the following sampling

instants can be accumulated for further evaluation.
The sampling intervals of the estimators and of the
controllers may be different. The testing results are
promising and they confirm the expectations. Further
testing of this control architecture will be done using
the laboratory plant for experiments with hybrid
control that was described by the authors in [4].
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