
Solving Systems of Linear Equations and Finding the Inversion of a
Matrix by Neural Network Using Genetic Algorithms (NN using GA)

Z. Ghassabi, B. Moaveni, A. Khaki-Sedigh
Department of Computer Science

Islamic Azad University, Science and Research Branch
Tehran
IRAN

rose_z60gh@yahoo.com b_moaveni@alborz.kntu.ac.ir sedigh@kntu.ac.ir

Abstract: - In this paper, we propose a one-layered neural network that recovers its input variables by genetic
algorithms to solve the systems of linear equations (or, equivalently, matrix inversion). First we described
solving systems of linear equations (matrix inversion) by mentioned neural network. Then, experimental
results are presented to show the effectiveness of the approach. Finally, future avenue of this research is
proposed.

Key-Words: - Solving Systems of Linear Equations, Neural Network, Genetic Algorithms, Matrix Inversion,
Block of the Recovery.

1 Introduction
Many problems in science and engineering (e.g.
robotics and signal processing) require solving
systems of linear equations (matrix inversion).
When solving systems of linear equations offline
with numerical methods, the goal is to find optimal
solution, without considering a time constraint. If
such a problem needs to be solved in real-time (e.g.
controller) under time constraints, existing
numerical methods may not scale well.
Well-known techniques to solve systems of linear
equations include:
Graphing, Substitution, Elimination/Addition,
Gauss_Jordan Elimination, Cramer's Rule, Matrix
Algebra /Inverses, …
Of these techniques, Gauss_Jordan Elimination,
Cramer's Rule, Matrix Inverses apply only to linear
systems of equations, subject to determinant of the
coefficient matrix not being zero. Numerical
methods are not universally applicable and cannot
guarantee that all solutions of systems of linear
equations have been found.
solving systems of Linear equations has been
studied in the field of neural networks [5], [6] with
varying results.
In this paper, a one-layered neural network is
proposed to solve the systems of linear equations
that it is a simple structure of feedforward neural
networks (FNN) and it recovers its inputs by genetic
algorithms.
The rest of the paper is organized as follows:
Section 2 presents problem formulation, while the
neural network model and recovering of the inputs
in mentioned neural network are presented in

section 3 with experimental results discussed in
section 5.1. Section 4 uses the mentioned NN for
finding the inversion of a matrix with experimental
results discussed in section 5.2.

2 Problem formulation to solve the
Systems of Linear Equations
Assume that a given n order system of linear
equation:

nnnn

nn

nn

bxaxaxa

bxaxaxa
bxaxaxa

=+++

=+++
=+++

...
:

...
...

212121

22222121

11212111

(1)

which can be simplified into bAx = , and

1

2

1

1*

2

1

*21

11211

,,

×

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

nnnn
nnnnnn

n

b

b
b

b

x

x
x

x
aaa

aaa
A

MM
L

MM

L

It is required to construct the algorithm finding for
any matrix A any value of the vector x satisfying
all the linear equations simultaneously.
In the feedforward neural network (FNN) with one
layer, the input vector are related to the output layer
as follows:

)(bpWfY −= (2)
Equation (1) can be rewritten as:

∑∑ ∑
= = =

=

=
n

j

n

i

n

j
jjji bpW

bpW

1 1 1

(3)

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 129

 xp = Y - B

 WA =

e
funfitness

min
_ =

 recovery block

GA

pW

So the vector x consisting of n components will be
an input of a neural network (NN).
From the above analyses, we wish to design a neural
network to solve the systems of linear equations. In
the following section, we will present the structure
of neural network and recovery block to solve the
systems of linear equations.

3 The Neural Network Model for
Solving Systems of Linear Equations

3.1 The FNN Model for Solving Systems
of Linear Equations
As mentioned in previous section, the network for
computing the solution of systems of linear
equations is a one-layered FNN, with the n input
variables as nppp ,...,, 21 , vector bbias)(of desire
outputs (supervising learning rule) and the matrix of
weighting coefficients A . The activation function in
equation (2) is linear (Fig.1).

 1na 21a 11a

 1y

 2y

 12a 22a 2na

 M
 ny

 na1 na2 nna
Fig.1 Neural Network model for equations (1) and (3).

The error for each output neuron in NN will be
determined as follows:

iii ybe −= (4)
where,

∑
=

=
n

j
ijji Wpy

1

In the network, input vector, p , is going to close to
vector x (px −min) by iterating procedure of
the input recovery as the error function minimizes.
Therefore, vector p is the solution of equation (1).
The diagram of NN with the block of the recovery
which uses GA to solve the systems of linear
equations is shown in Fig.2.

Fig.2 Neural Network structure which uses genetic

algorithm for recovering of inputs.

3.2 Recovery Block for recovering of
NN's inputs for Solving Systems of Linear
Equations
Genetic Algorithms search from a populations of
solutions, use fitness function and probabilistic
transition rules.
Let)(tP and)(tC be parents and offspring in a
current generation t ; the general structure of genetic
algorithms is described as follows:

Procedure: Genetic Algorithms
begin
 Initialize)(tP ;
 evaluate)(tP ;
 while (not termination condition) do
 recombine)(tP to yield)(tC ;
 (crossover, mutation)
 evaluate)(tC ;
 select)1(+tP from)(tP and)(tC ;
 1+= tt
 end
end

For matrix nnA × in linear matrix equations, bAx = ,
steps of writing GA recovery block is as follows:

∑

∑

∑

1x

2x

nx

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 130

1-determining the values of population in the first
generation for genetic algorithm, mutation rate
(denoted by mP), crossover rate (denoted by cP), the
number of genes, the population size and the
maximum iteration.
According to variables boundaries, initial population
is randomly generated. Each chromosome consists
of n (the number of components in vector x) genes.
2-Determining fitness function and mutation,
crossover operations
We want to minimize error function in the neural
network. Therefore, we choose some chromosomes
which have minimum fitness function value.
The fitness function from equations (1), (4) is as
follows:

)(_ 21 neeefunctionfitness K++= (5)
The arithmetic crossover is defined as the
combination of two chromosomes Parent1 and
Parent2 as follows [8]:

t1rand)Paren-(1+Parent2=Child2
t2rand)Paren-(1+Parent1=Child1

(6)

where rand is a random number and
(0,1) rand∈ . Child1 and Child2 are the resulted

chromosomes after the crossover operations.
The non-uniform mutation is given as follows [8]:
for a given parent],,,,[V 1 nk ggg KK= if the
element g k of it is selected for mutation, the
resulting offspring is],,,,[V /

1
/

nk ggg KK= ,

where /
kg is randomly selected from two possible

choices:

)g-g(t,- g=gor

)g - g(t,+ g=g
Lower
kkk

/
k

k
Upper
kk

/
k

∆

∆

(7)

where Upper

kg , Lower
kg are the upper and lower bounds

for g k . The function y)(t,∆ returns a value in the
range y][0, such that the value of y)(t,∆
approaches to 0 as t increases (t is the generation
number) as follows:

b)
T
t-y.r.(1y)(t, =∆

(8)

where, r is a random number from [0,1], T is the
maximal generations number and b is a parameter
determining the degree of non-uniformity.

4 Finding the Inversion of a Matrix
Finding the inversion of matrix A is the same as
solving the systems of linear equations as follows:

IAB = (9)

that

nnnnnnnn

n

nn

nnnnnn

n

b

bbb

bbb
bbb

B
aaa

aaa
A

××

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1,,0,0
:

0,,1,0
0,,0,1

,

,,,
:

,,,
,,,

,

1

21

22221

1211

*21

11211

K

K

K

K

K

K

L

M

L

I , B are identity matrix and inversion of matrix
A respectively (IAA =−1).

We rewrite equation (9) as follows:
I=AW (10)

Matrix W is the solution of the system of linear
equations (9), (10) and input variable in neural
network in Fig.1.
For finding the inversion of matrix nnA × , the
neural network block in Fig.2 is used n times for
recovering the components of matrix W resulted by
recovery block. On the other hand we have n NN
that each one consists of the matrix of weighting
coefficients A , j th column of B as input variables
and corresponding column from I as desire outputs.
The fitness function from equation (9) is as follows:

)(_ 21 nEEEfunctionfitness K++= (11)

that iE , ni K1= is the value of error in i th NN.
Error for each NN is computed by equation (5).

5 Experimental results

5.1 Experiments for Solving Systems of
Linear Equations
Assume 33×A , 31×b as follows:

13133

2

1

33
3
1
2

,,
4 0 1-

0.5 2 1
0 1 2

×××
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= b

x
x
x

xA

that TAA ≠ and the elements of A can be negative
number. The initial values for computer program are
as follows:

mP cP The number
of genes

Maximum
population

Maximum
Generation

6.0 9.0 3 30 350

Initial genes were generated randomly as

]5.0,5.0[− . The problem solution computed by our
proposed approach is as follows:

1.0435x0.3478,- x, 1.1739 321 ===x

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 131

Let us consider the following ill-conditioned matrix
53×A :

13

135

4

3

2

1

33
3
1
2

,,
1 1 2 1- 3
0.5 0 1 1 1

0.5 1 1 2- 2

×

×

×
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
= b

x
x
x
x
x

xA

The final solution (equilibrium point) obtained by
using our program was

[]

[]T

T

xA

x

3.0000 1.0000 2.0000

0.5000 0.2134 0.3369 0.0934- 0.5065
*

*

=

=
−

−

which is excellent agreement with the exact minimal
norm solution

[]Tx 0.2047 0.1654 0.4094 0.0866- 0.5748 * =
where, T denotes the transpose of a vector or
matrix, obtained by using command b*pinv(A) in
MATLAB7. The initial values for computer
program are as follows:

mP cP The number
of genes

Maximum
population

Maximum
Generation

6.0 9.0 5 50 400

5.2 Experiments for finding the inversion
of a Matrix
Assume 22×A as follows:

22222221

1211

22 1,0
0,1

,
,
,

,
 4 2
 2 2

×××
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
= I

bb
bb

BA

The initial values for computer program are as
follows:

mP cP The number
of genes

Maximum
population

Maximum
Generation

6.0 9.0 4 50 300

Initial genes were generated randomly from

]5.0,5.0[− . The solution by runnig of our computer
program is as follows:

⎥
⎦

⎤
⎢
⎣

⎡
=

−

0.5000 0.4999-
0.5000- 0.9997 *

B

The solution by using numerical methods is as
follows:

⎥
⎦

⎤
⎢
⎣

⎡
=

0.5000 0.5000-
0.5000- 1.0000

B*

6 Conclusion
Discussed approach for solving systems of linear
equations and finding the inversion of a matrix is
shown by experiments to be very effective and
feasible method. The fast training speed and high
accuracy are the most important advantages for this
method. In this paper, Genetic algorithm provided
us a great flexibility to hybridize with NN to make
an efficient implementation for solving systems of
linear equations and finding the inversion of a
matrix. Hybridizing GA with other artificial
algorithms for solving systems of linear equations
with multiple solutions is future avenue of this
research.

References:
[1] Andries P.Engelbercht, Computational

Intelligence, University of Pretoria, South
Africa, 2002

[2] Mitsuo Gen,Runwei Cheng, Genetic Algorithms
and engineering design, Ashikaga Institute of
Technology Ashikaga, Japan, 1997

[3] A. I. Galushkin, V.A. Sudarikov, Adaptive
Neural algorithm for Solving Linear Algebra
Problems, IEEE, Vol.1, 1992, pp. 128-138.

[4] R. Brits, A. P. Engelbrecht, F. van den Bergh,
Solving Systems of Unconstrained Equations
using Particle Swarm Optimization, Systems,
Man and Cybernetics, 2002 IEEE International
Conference, Vol.3, 2002, Page(s):6 pp.

[5] A. Cichocki and R. Unbehaun, Neural Networks
for Solving Systems of Linear Equations And
Related Problems, IEEE Transactions on Circuts
and Systems-I. Fundemental Theory and
Applications. Vol 39, No. 2, February 1992,
pp.124-137.

[6] D. S. Huang and Z. Chi, Solving Linear
Simultaneous Equations by Constraining
Learning Neural Networks, International Joint
Conference on Neural Networks, Vol
Addendum, Praque, 1995, pp. 775-779.

[7] M. B. Menhaj, Computational intelligence,
Amirkabir University, Iran, 2002

[8] Z. Michalewicz, Genetic Algorithms + Data
Structure= Evolution Programs, 2nd ed.,
Springer- Verlag, New York, 1994.

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006 132

