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Abstract: - In this paper, we propose a one-layered neural network that recovers its input variables by genetic 
algorithms to solve the systems of linear equations (or, equivalently, matrix inversion). First we described 
solving systems of linear equations (matrix inversion) by mentioned neural network. Then, experimental 
results are presented to show the effectiveness of the approach. Finally, future avenue of this research is 
proposed.  
 
Key-Words: - Solving Systems of Linear Equations, Neural Network, Genetic Algorithms, Matrix Inversion, 
Block of the Recovery. 
 
1   Introduction 
Many problems in science and engineering (e.g. 
robotics and signal processing) require solving 
systems of linear equations (matrix inversion). 
When solving systems of linear equations offline 
with numerical methods, the goal is to find optimal 
solution, without considering a time constraint. If 
such a problem needs to be solved in real-time (e.g. 
controller) under time constraints, existing 
numerical methods may not scale well.  
Well-known techniques to solve systems of linear 
equations include: 
Graphing, Substitution, Elimination/Addition, 
Gauss_Jordan Elimination, Cramer's Rule, Matrix 
Algebra /Inverses, … 
Of these techniques, Gauss_Jordan Elimination, 
Cramer's Rule, Matrix Inverses apply only to linear 
systems of equations, subject to determinant of the 
coefficient matrix not being zero. Numerical 
methods are not universally applicable and cannot 
guarantee that all solutions of systems of linear 
equations have been found. 
solving systems of Linear equations  has been 
studied in the field of neural networks [5], [6] with 
varying results. 
In this paper, a one-layered neural network is 
proposed to solve the systems of linear equations 
that it is a simple structure of feedforward neural 
networks (FNN) and it recovers its inputs by genetic 
algorithms. 
The rest of the paper is organized as follows: 
Section 2 presents problem formulation, while the 
neural network model and recovering of the inputs 
in mentioned neural network are presented in 

section 3 with experimental results discussed in 
section 5.1. Section 4 uses the mentioned NN for 
finding the inversion of a matrix with experimental  
results discussed in section 5.2. 
 
 
2   Problem formulation to solve the 
Systems of Linear Equations 
Assume that a given n  order system of linear 
equation: 
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which can be simplified into bAx = , and  
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It is required to construct the algorithm finding for 
any matrix A  any value of the vector x  satisfying 
all the linear equations simultaneously. 
In the feedforward neural network (FNN) with one 
layer, the input vector are related to the output layer 
as follows: 

)( bpWfY −=  (2)  
Equation (1) can be rewritten as: 
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So the vector x  consisting of n  components will be 
an input of a neural network (NN). 
From the above analyses, we wish to design a neural 
network to solve the systems of linear equations. In 
the following section, we will present the structure 
of neural network and recovery block to solve the 
systems of linear equations. 
 
 
3   The Neural Network Model for 
Solving Systems of Linear Equations 
 
 
3.1 The FNN Model for Solving Systems 
of Linear Equations 
As mentioned in previous section, the network for 
computing the solution of systems of linear 
equations is a one-layered FNN, with the n  input 
variables as nppp ,...,, 21 , vector bbias)(  of desire 
outputs (supervising learning rule) and the matrix of 
weighting coefficients A . The activation function in 
equation (2) is linear (Fig.1). 
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Fig.1 Neural Network model for equations  (1) and (3). 

 
The error for each output neuron in NN will be 
determined as follows:  

iii ybe −=  (4)  
where, 
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In the network,  input vector, p , is going to close to 
vector x  ( px −min ) by iterating procedure of 
the input recovery as the error function minimizes. 
Therefore, vector p  is the solution of equation (1). 
The diagram of NN with the block of the recovery 
which uses GA to solve the systems of linear 
equations is shown in Fig.2.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig.2 Neural Network structure which uses genetic 

algorithm for recovering of inputs. 
 
 
3.2 Recovery Block for recovering of 
NN's inputs for Solving Systems of Linear 
Equations 
Genetic Algorithms search from a populations of 
solutions, use   fitness   function   and   probabilistic 
transition rules. 
Let )(tP  and )(tC  be parents and offspring in a 
current generation t ; the general structure of genetic 
algorithms is described as follows: 
 
Procedure: Genetic Algorithms  
begin 
  Initialize )(tP ; 
  evaluate )(tP ; 
  while (not termination condition) do 
    recombine )(tP to yield )(tC ; 
    (crossover, mutation) 
    evaluate )(tC ; 
    select )1( +tP from )(tP and )(tC ; 
    1+= tt  
  end 
end   
 
For matrix nnA ×  in linear matrix equations, bAx = , 
steps of writing GA recovery block is as follows: 
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1-determining the values of population in the first 
generation for genetic algorithm, mutation rate  
(denoted by mP ), crossover rate (denoted by cP ), the 
number of genes, the population size and the 
maximum  iteration.  
According to variables boundaries, initial population 
is randomly generated. Each chromosome consists 
of n (the number of components in vector x ) genes. 
2-Determining fitness function and mutation, 
crossover operations 
We want to minimize error function in the neural 
network. Therefore, we choose some chromosomes 
which have minimum fitness function value. 
The fitness function from equations (1), (4) is as 
follows: 

)(_ 21 neeefunctionfitness K++=  (5)  
The arithmetic crossover is defined as the 
combination of two chromosomes Parent1 and  
Parent2  as follows [8]: 

t1rand)Paren-(1+Parent2=Child2
t2rand)Paren-(1+Parent1=Child1   

(6)  

where rand  is a random number and 
(0,1) rand∈ . Child1 and Child2  are the resulted 

chromosomes after the crossover operations.  
The non-uniform mutation is given as follows [8]: 
for a given parent ],,,,[V 1 nk ggg KK=  if the 
element  g k of it is selected for mutation, the 
resulting offspring is ],,,,[V /

1
/
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where /
kg  is randomly selected from two possible 
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where Upper

kg , Lower
kg  are the upper and lower bounds 

for  g k . The function y)(t,∆  returns a value in the 
range y][0,  such that the value of y)(t,∆  
approaches to 0  as t  increases ( t  is the generation 
number) as follows: 

b)
T
t-y.r.(1y)(t, =∆  

(8)  

where, r  is a random number from [0,1], T  is the 
maximal generations number and b  is a parameter 
determining the degree of non-uniformity. 
 
 
4   Finding the Inversion of a Matrix 
Finding the inversion of matrix A  is the same as 
solving the systems of linear equations as follows: 

IAB =  (9)  

that 
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I , B  are identity matrix and inversion of matrix 
A  respectively ( IAA =−1 ). 

We rewrite equation (9) as follows:  
I=AW  (10)  

Matrix W  is the solution of the system of linear 
equations (9), (10) and input variable in neural 
network in Fig.1.  
For finding the inversion of matrix nnA ×  ,  the 
neural network block in Fig.2 is used n  times for 
recovering the components of matrix W  resulted by 
recovery block. On the other hand we have n  NN 
that each one consists of the matrix of weighting 
coefficients A , j th column of B  as input variables 
and corresponding column from I  as desire outputs. 
The fitness function from equation (9) is as follows: 

)(_ 21 nEEEfunctionfitness K++=  (11)  

that iE , ni K1=  is the value of error in i th NN. 
Error for each NN is computed by equation (5). 
    
 
5   Experimental results 
 
 
5.1 Experiments for Solving Systems of 
Linear Equations 
Assume 33×A  , 31×b  as follows: 
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that TAA ≠  and the elements of A  can be negative 
number. The initial values for computer program are 
as follows:  
 

mP  cP  The number 
of genes 

Maximum 
population 

Maximum 
Generation 

6.0 9.0 3  30  350  
 
Initial genes were generated randomly as 

]5.0,5.0[− . The problem solution computed by our 
proposed approach is as follows: 

1.0435x0.3478,- x, 1.1739 321 ===x  
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Let us consider the following ill-conditioned matrix 
53×A : 
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The final solution (equilibrium point) obtained by 
using our program was 

[ ]

[ ]T

T
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x

3.0000    1.0000    2.0000

0.5000    0.2134    0.3369    0.0934-   0.5065 
*
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=
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which is excellent agreement with the exact minimal 
norm solution  

[ ]Tx 0.2047    0.1654    0.4094    0.0866-   0.5748 * =  
where, T denotes the transpose of a vector or 
matrix, obtained by using command b*pinv(A)  in 
MATLAB7. The initial values for computer 
program are as follows:  
  

mP  cP  The number 
of genes 

Maximum 
population 

Maximum 
Generation 

6.0  9.0  5  50  400  
 
 
5.2 Experiments for finding the inversion 
of a Matrix  
Assume 22×A  as follows: 
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The initial values for computer program are as 
follows:  
 

mP  cP  The number 
of genes 

Maximum 
population 

Maximum 
Generation 

6.0  9.0  4  50  300  
 
Initial genes were generated randomly from 

]5.0,5.0[− . The solution by runnig of our computer 
program is as follows: 
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The solution by using numerical methods is as 
follows: 
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6   Conclusion 
Discussed approach for solving systems of linear 
equations and finding the inversion of a matrix is 
shown by experiments to be very effective and 
feasible method. The fast training speed and high 
accuracy are the most important advantages for this 
method. In this paper, Genetic algorithm provided 
us a great flexibility to hybridize with NN to make 
an efficient implementation for solving systems of 
linear equations and finding the inversion of a 
matrix. Hybridizing GA with other artificial 
algorithms for solving systems of linear equations 
with multiple solutions is future avenue of this 
research.    
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