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Abstract:- This paper considers the transfer of knowledge expressed in the form of a collection of fuzzy or 
linguistic inference rules, also called knowledge or rule-base, from one robot (teacher) to another robot (student) in 
the case where both robots are supposed to perform the same task. Some rules are assumed taught or transferred to 
the student; i.e., they are known, and others are missing. The objective of this study is to have the student robot 
uncover the missing rules through self-experience and using the transferred rules. This objective is achieved by 
devising a novel method that enables the student robot to complete the knowledge-base. The completed rule-base 
would not necessarily turn out to be identical to the one possessed by the teacher robot. But, once it is used in the 
execution of the same task, it leads to satisfactory performance from a comparative perspective.   
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1   Introduction 
Fuzzy logic extends the conventional binary logic to 
allow the handling of partial truth values; i.e., values 
between "completely true" and "completely false." 
Fuzzy inference, which use fuzzy or linguistic rule-
bases, also called knowledge-bases, permit the 
approximate modeling of complex humanistic 
processes in a more natural and relevant manner as 
compared to models based on precise classical 
mathematical approaches [1, 2]. 

The rule-base of a fuzzy inference system or fuzzy 
controller is formed by a collection of conditional “if-
then” rules of the form: If x is A and y is B, then z is C. 
In the expressed rule, x and y are the input variables of 
the fuzzy controller and z is the output variable. A and 
B are fuzzy sets assigned over the input variables and 
C is a fuzzy set over the output variable. Fuzzy set C 
could also be a singleton or crisp value. 

Fuzzy inference and knowledge-bases have, in 
recent years, been used in the area of robotics to equip 
robots with the necessary linguistic knowledge in the 
execution of a specific task [3-7]. One way to come up 
with an appropriate knowledge-base is through the use 
of numerical input-output data, representing the 
experience of a human operator, and the application of 
learning methods [6-8]. It is assumed, therefore, that a 
knowledge-base, obtained in this or in some other 
justifiable methodology, permits a suitable and good 
task execution resembling to a large degree that of a 
human expert. A robot equipped with a knowledge-
base of the noted type is called, in this study, a teacher 
robot. 

This study addresses the transfer of knowledge 
from one robot (teacher) to another robot (student) in 
the case where both robots are required to perform the 
same task. The teacher robot is assumed to possess a 
complete knowledge-base, which, once invoked, leads 
to an adequate execution of the task. The student robot 
has an incomplete knowledge-base. That is, some rules 
are assumed taught or transferred to the student; i.e., 
they are known, and others are missing. The objective 
is to have the student robot learn or uncover the 
missing rules through self-experience and using the 
transferred knowledge. 

Hence, this study considers devising a novel 
procedure that can be applied to configure the missing 
rules based on numerical input-output data acquired 
from the experience of the student robot. The learning 
method and the data employed in the configuration of 
the knowledge-base of the teacher robot are considered 
unknown and, as a result, cannot be used since this 
robot is assumed to have its own learning manner and 
experiential situations. What can and should be used 
are the rules that are taught to the student robot. The 
described situation resembles to a large degree the real 
teacher-student relationship. After learning some of the 
teacher’s skills, the student, then, has to develop his 
own learning procedures and define experiential 
situations he finds suitable to acquire the other needed 
skills in the task execution.  

Consequently, the learning procedure that needs to 
be devised has to differ from the one used to obtain the 
rule-base of the teacher robot. In addition, it has to be 
based on tailoring specific student-related and teacher-
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independent experiential situations from which 
convenient data can be obtained in order to facilitate 
the determination of the missing rules using the known 
or transferred ones.  

In the next section, the general structure of the 
fuzzy inference system that is used in this study is 
given. Also, some properties of the system are 
emphasized. Then, based on the system structure and 
properties, a procedure that permits the identification 
of the missing rules given a number of available rules 
will be described in Section 3. The described 
procedure will then be applied to a case study and 
tested for appropriateness in Section 4. This is done 
through the comparison of the performance of the 
obtained completed knowledge-base with that 
possessed by the teacher robot. Section 5 provides 
conclusive comments. 

 
2    Fuzzy Inference System and 
      Properties 
The structure of the fuzzy inference system considered 
in this study consists of a set of “if-then” rules of the 
form: 
 

        If x is An and y is Bm, then z is Cnm            (1) 
 
An, for n = 1, 2, …, N and Bm for m=1, 2,…, M are the 
fuzzy sets assigned respectively over the input 
variables x and y of the system and whose membership 
functions are denoted by )(x

An
µ and ).(y

Bm
µ  

All the (n,m) combinations are considered to form 
the antecedents or “if” parts of the rules. Hence, the 
number of rules is equal to the product N×M. Further, 
the membership functions of the fuzzy sets assigned 
over a single input variable are such that the sum of the 
grades of membership of a specific crisp input value in 
these fuzzy sets is 1. Hence, the membership functions 
of the fuzzy sets An and Bm are as in Figure 1. Cnm is 
the crisp consequent or “then” part of rule nm. 

Based on the above-described fuzzy system 
structure and using the defuzzification method 
developed in [9] as an improved version of the 
weighted-average defuzzification method [10], the 
crisp output obtained from a crisp input pair, denoted 
(x0, y0), is written as follows:  
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Now, we consider the grid partitioning of the input 

space based on the breakpoints of the assigned 
membership functions as shown in Figure 1. Using the 
indicated  x1,  x2, …, xN  points on the x-axis as well as 
the y1,  y2, …, yM points on the y-axis, then the 
following can be obtained with regard to the output in 

Equation (2) when fixing y to one of the noted y’s and 
letting x be anywhere between any two consecutive x’s 
or vice-versa. 
 

For y = ym, where m = 1,2, …, M and xn ≤ x ≤ xn+1 
for n= 1,2,…, N-1, then the output can be expressed as 
follows: 
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Fig. 1.  Membership-function partitioning of the input space. 
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then the output in Equation (3) becomes: 
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      Similarly, for x = xn,,  where n =1, 2,…, N and ym ≤ 
y ≤ ym+1,  where m =1, 2, …, M – 1, then the output can 
be expressed as: 
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Here, 1xnAn

=)(µ  and 1yy
1mBBm
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Hence, the output in Equation (5) becomes: 
 

(6)])[( )()( 1mn1mnnmBm CCCyz ++ +−= µ  
 
It can be observed here that the part of the 

membership function of An that is used in Equation (4) 
is the one between xn and xn+1. It is therefore, the 
decreasing part of An. Similarly, the decreasing part of 
Bm is used in Equation (6). Hence, if the indicated parts 
of the membership functions of An and Bm are linear, as 
in Figure 1, then Equations (4) and (6) become also 
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linear. They represent, therefore, straight-line 
segments, which could be increasing or decreasing 
depending on the sign of the difference (Cnm – C(n+1)m) 
in Equation (4) and (Cnm – Cn(m+1)) in Equation (6). 

We finally verify in this section the continuity 
property of the system input-output characteristic when 
one input variable is fixed and the output is taken as a 
function of the second input variable. Considering 
Equation (4) again, then the output for y = ym and 

 can be expressed as:  21 ++ ≤≤ nn xxx
 

(7)])[( )()()()( m2nm2nm1n1nA CCCxz ++++ +−= µ  
 
The evaluation of the outputs in Equations (4) and (7) 
at x = xn+1; i.e., at the boundary point between the two 
indicated x regions and where µA(n+1)(x)=1 and 
µAn(x)=0, results in these outputs being equal to 
C(n+1)m. Further, Equation (6) and its modified version 
for x = xn and ym+1 ≤ y ≤ ym+2 result in an output at 
y=ym+1 being equal to Cn(m+1) . 
 

 
3    Procedure for the Identification of  
     Missing Rules 
Based on the structure of the fuzzy inference system 
considered in Section 2 and the verified properties of 
the input-output characteristic when one input is fixed 
and the other varies between specific limits, a 
procedure for the identification of the missing rules is 
devised in this section. It is assumed that the 
membership functions of the input fuzzy sets are given 
in addition to some number of crisp rule consequents. 
These are to be used to determine the consequents of 
the missing rules. As mentioned in Section 1, the 
student robot is to uncover the missing rules through 
self-experience. This means that some convenient 
input points need to be specified for which the 
measured outputs need to be determined. The obtained 
input-output data points are also to be used to 
determine the consequents of the missing rules. 

Looking back at Equations (4) and (6), it can be 
seen that two rule consequents are involved in each of 
these equations. This means that if one involved 
consequent in an equation is known and measured data 
along the corresponding line segment is used to come 
up with the equation of the linear input-output curve 
over this segment for fixed x or y, then the slope of the 
obtained linear equation can be equated with the slope 
of the curve expressed in (4) or (6). This will then lead 
to the determination of the unknown consequent 
involved in Equation (4) or (6). Hence, it is required 
that some data approximation or interpolation 
procedure be applied to come up with a linear curve 
interpolating between the available measured input-
output data. The linear least-mean-square (LMS) 
algorithm for data approximation is chosen here. 

The line equation obtained from the LMS will be 
of the form:    

            z  =  q r  + h                                    (8) 
 

To obtain this line equation, we start by taking input 
points, which lie on the previously noted line 
segments. Hence, r would represent the input variable 
x if the input points are for fixed y and varying x. It 
would represent the input variable y if the input points 
are for fixed x and varying y. The output for each of 
these inputs is then measured. Afterwards, the 
following two quantities are calculated: 

∑ ∑
= =
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iiiirz zr

D
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where ri and zi are respectively the input and output of 
each point, and D is the number of data points taken. 
Note that, for Equation (4), ri = xi while for (6), ri = yi. 
The slope of the line in Equation (8) is calculated using 
(9) and (10) as 

                        
                       (11)rrrz ssq =  

                
This slope is then equated to that of Equation (4) or 
(6), depending on the one we are using, to get the 
missing consequent. Note that, in Equation (4), µAn(x) 
can be written as ax + b, where a and b depend on the 
considered membership function. The same applies to 
Equation (6) where µBm(y) takes the form ay + b. 
Therefore, the slope q, calculated according to 
Equation (11), can be written as: 
 
q = a× [quantity inside brackets in Eq. (4) or (6)] (12) 

 
Now, due to the continuity property that has been 

verified in Section 2 regarding the system input-output 
characteristic for a fixed input and varying second 
input, Figure 2 is drawn and it is used to complete the 
description of the procedure for the identification of 
the missing rule consequents. The consequents on the 
horizontal line segments are obtained based on 
Equations (4) and (7). Those on the vertical line 
segments are obtained based on Equation (6) and its 
continuity counterpart equation. 

As can be seen in Figure 2, it is sufficient that only 
one rule consequent be known in order to be able to 
determine the consequents of all other rules in the 
system. This can be done in a chaining manner. Every 
time an unknown consequent is determined over a line 
segment, then this consequent can be used over the 
next segment with corresponding measured outputs 
and LMS to determine another unknown consequent. 
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For example, if C11 is known, then the use of 
measured outputs for some number of input points at y 
= y1 and for x1 ≤ x ≤ x2, gives C21. Now, using the 
measured data in the appropriate ranges, C21 can be 
used, in turn, to obtain C31 and C31 gives C41, etc. Also, 
C11 can be used to obtain C12 and C12 gives C22. C22, in 
turn, gives C32, etc. 
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Fig. 2.  Consequents on line segments drawn using 

     the fuzzy system continuity property. 
 
But, since each consequent determined in the 

above-noted manner contains some error, then this 
error can accumulate as we go from one segment to the 
next. The error accumulation would be lessened 
whether more than one rule consequent is known. In 
such a situation, every unknown consequent needs to 
be determined based on what can be called the 
minimum distance or shortest path concept. That is, the 
smallest number of line segments leading from each 
known consequent to a specific unknown one needs to 
be determined. Then, the known consequent that needs 
to be used to obtain the specific unknown one is the 
consequent whose shortest path is the smallest. The 
smallest number of line segments (steps) leading from 
one consequent, Cij, to another, Clp, can be obtained 
using the following formula:  

 
                    dmin = |i - l| + |j - p|                       (13) 
 
Let, for example, C12 and C34 be the only known 

consequents. The consequent C43, say, can be 
determined using C12 and also using C34, which could 
lead to different values of C43. Due to the error 
accumulation issue explained before, it is preferable to 
determine C43 using the closest known consequent. In 
this example, it is C34 not C12 since, according to 
Equation (13), the minimum distance between C12 and 
C43 is 4 while that between C34 and C43 is 2. This also 
appears clearly in Figure 2. 

4  Case Study and Testing 
In this section, the fuzzy inference system or fuzzy 
controller that was designed in [7] for robot navigation 
among moving obstacles and based on the data-driven 
learning algorithm developed in [8] is used to test the 
procedure for the identification of missing rules as 
described in Section 3. The system has 7 input 
membership functions over the input variable denoting 
“angle” and 8 membership functions over the second 
input variable denoting “distance.” Thus, the total 
number of used rules is 56 (Section 2). The system 
output represents the “deviation angle” that the robot 
needs to implement at every specified time step in 
order to avoid collision with the moving obstacles and 
remain as close as possible to the direct path between 
the current robot position and the target point.  

Some of the system rule-base consequents are put 
aside (assumed missing or unknown) and others are 
considered known. The use of the procedure 
introduced in Section 3 will give the missing 
consequents. The completed rule-base will be tested 
for appropriateness through the comparison of its 
input-output characteristic with that of the system 
obtained in [7] and considered to be the teacher robot 
knowledge-base.  

Due to the error accumulation issue that was 
discussed in Section 3, the number of missing rule 
consequents has been increased gradually in the 
experimentation in order to determine how many out 
of a total of 56 consequents can be ignored while still 
having the completed knowledge-base perform 
satisfactorily; i.e., provide an input-output 
characteristic that is sufficiently close to the one 
obtained in [7]. 

 

 
Fig. 3. Input-output characteristic of the student robot 

                 knowledge-base. 
 
Figure 3 provides the input-output characteristic 

of the completed (student) rule-base obtained by the 
procedure introduced in Section 3 with 20 missing 
consequents. The comparison of Figure 3 control 
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surface with that given in [7] shows that they are 
sufficiently close and, hence, a satisfactory 
performance is obtained with a good number of 
missing consequents. In fact, the use of a smaller and 
smaller number of missing rule consequents provided a 
closer and closer characteristic to that obtained in [7]; 
i.e., the characteristic of the teacher robot knowledge-
base. This shows the efficiency of the rule completion 
procedure introduced in this study. 
 
 
5 Conclusion 
This study has addressed the transfer of knowledge 
from what has been termed a teacher robot to a student 
robot. Having the knowledge represented in the form 
of a rule-based fuzzy or linguistic inference system, it 
has been assumed that a part of the rule-base 
consequents are taught or transferred to the student 
robot. The missing consequents need to be identified 
by this robot through self-experience and using the 
transferred knowledge. 

For this purpose, this paper has presented a novel 
procedure for the determination of the missing 
consequents. The procedure has been introduced based 
on the structure and verified properties of the fuzzy 
system that uses an improved weighted-average 
defuzzification method. In this manner, the procedure 
turned out to be permitting the student robot to 
complete its knowledge-base through its own learning 
method and specifically tailored experiential situations 
that allowed the use of the knowledge transferred from 
the teacher robot.  

The described procedure can be used to allow 
interaction between machines in terms of knowledge 
transfer and learning and in a manner that resembles to 
a large degree what takes place between a teacher and 
a student in real life. In a car-driving school, for 
instance, the student cannot be taught all the driving 
rules in all possible situations. Some rules can be 
taught to the student. The other rules need to be 
discovered and learned by the student through self-
experience.  

The performance testing of the devised procedure 
has shown that it is capable of accomplishing efficient 
rule completion under a relatively good number of 
missing consequents. This has been verified by 
comparing the input-output characteristic of the 
completed rule-base with that of the rule-base 
possessed by the teacher robot in the case of robot 
navigation among moving obstacles. 

 
 
 
 
 
 
 

Future research should address the problem of 
improving the efficiency of the provided procedure for 
missing rules identification in such a manner that the 
completed knowledge-base would still have a close 
performance to the teacher robot knowledge-base but 
under a larger number of missing consequents. 
Moreover, devising a procedure for the configuration 
of the whole inference system components should be 
addressed. In addition to the rule consequents, the 
number and type of the membership functions should 
be of interest. This would lessen the dependence of the 
student robot on the teacher and raises the level of 
intelligence of the student robot as a learning machine.  
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