
Composite Web Services for E-Activities

STOICA CRISTINA, STOICA VALENTIN, IONESCU FELICIA, CIOBANU COSMIN
Faculty of Electronics, Telecommunications and Information Technology

University Politehnica of Bucharest
1-3 Iuliu Maniu Bvd, Postal Code 061071, Sector 6, Bucharest

ROMANIA
cristina@tech.pub.ro, vstoica@yahoo.com, http://info.tech.pub.ro

Abstract: This paper presents a solution for design, implementation and testing an e-commerce application
based on advanced distributed technologies and tools. The current demands for enterprise applications require
the possibility of running on heterogeneous systems (the platform independence), a minim of functional
dependencies between software components of the applications and a standardized manner for integrating the
applications and presenting the functionalities. The most recent response is provided by SOA (Service
Oriented Architecture) and Web Services technology. But the complexity is done by composing the
functionalities in a specific order and simply enough to permit easy future changes. In this area, WS-BPEL
(Business Process Execution Language for Web Services) is important for composing Web Services in
business processes. Thus, we illustrate creating composite Web service for distributed application over
Internet.

Key-Words: - service oriented architecture, distributed technologies, composite Web services

1 Introduction
E-business applications became today more and
more complex as data volume and functionalities
increases. Hereby, the need to split these in
independent modules that can be easily and
efficiently managed concern software developers.

Most e-activities are client-server applications
that imply the existence of a server (database server
or Web server or any application server) and clients.
This can be a thick client, which means that at this
level is implemented also the business logic of the
application. Or it can be a thin client, that do not do
anything else than display the data received from the
server. In this case, the business logic of the
application is implemented on server-side.

Because the actual applications must deal with a
huge data volume and complex business logic,
three-tier architecture is most appropriate and
frequently used. The client application represents the
user interface, the data are handled by a database
server and data processing is implemented on
another level (an application server or a Web server)
that also deal with client’s requests.

At database design level, software developers
must consider aspects concerning concurrency
control and fast data access [1]. Also must apply
techniques to improve the communication [2].

The client applications do not communicate
directly with database server when request data. At
logic business level, the data is processed using
distributed objects. The main disadvantage of using

distributed objects is the fact that the objects have
state and lifecycle and a client is limited to use them
only during this period of time. Web services
represent a stateless technology based on a new
architectural style, SOA (Service Oriented
Architecture), used to obtain a maximum functional
independence between the different software
components of a complex application [3]. This also
leads to an efficient development and maintenance.

2 SOA and Web Services
A SOA contains three roles: a service requestor, a
service provider, a service registry and three
operations: publish, find and bind.

A service provider creates a service description,
publishes it in one or more service registries and
receives messages invoking the service from one or
more service requestors. Thus, a service provider
represents the server-side inside the client/server
relation between the service requestor and the
service provider. A service requestor finds certain
service description published in one or more service
registries and uses it to bind or invoke provider’s
services. Thus, a service requestor represents the
client-side inside the client/server relation between
the service requestor and the service provider.

A service registry presents the service
descriptions published by the service providers and
allow searching these descriptions by the service

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 115

requestors. Its role is matching the service requestor
and the service provider.

After that, the service registry became
unnecessary, the interaction evolve between the
service requestor and the service provider directly.
The client sends a SOAP (Simple Object Access
Protocol) request message to the server, that
generates based on client request a SOAP response
message [3]. The SOAP is XML (Extensible
Markup Language) based and provide a matching
mechanism between SOAP messages and HTTP
(Hypertext Transport Protocol) that is the most used
communication protocol over Internet.

In distributed systems and service oriented
architectures area, Web services has gain ground in
the last years. The Web services infrastructure
providers like IBM, Microsoft, W3C and Sun have
published their own Web services definitions [4]. A
conclusion of all those definitions can be as follows:
a Web service is platform and implementation
independent software and it can be described using a
description language like WSDL (Web Services
Description Language), published in a service
registry, detected through a standard mechanism like
UDDI (Universal Description Discovery and
Integration) [3]. Web services can be invoked over a
network through an API like JAX-RPC (Java API
for XML) based RPC (Remote Procedure Call) [5].

A very important Web services characteristic is
the composition [6]. Web services can be composed
with other services using languages like WS-BPEL
(Business Process Execution Language for Web
Services) [7]. A BPEL process specifies the strict
order for invoking the participant Web services. The
invocation can be sequential or parallel. With BPEL
a conditional behavior is possible. For example,
invoking a service can be dependent from a value of
a previous invocation. Cycles can be build, variables
can be declared, copied or initialized, etc. Thus,
complex processes can be defined based on
algorithms. Each BPEL process integrates more
activities: invoke for invoking methods of other
services, receive for waiting an invocation from a
client, reply for generating answers, assign for data
manipulation block, switch, etc. A BPEL process
defines links with the partners, using a partnerLink
tag. For a client, a BPEL process looks like a simple
Web service. A BPEL process is defined as a
composition of the existing Web services. The
interface of the new composite Web service uses a
set of portType-s providing operations like any other
service. BPEL processes receive invocations from
clients. One of them is the BPEL process user that
makes the initial invocation. The others clients are
Web services invoked by BPEL processes and call a

callback method returning the results. A schematic
BPEL process is shown in Fig. 1:

Fig.1 Sample of BPEL process

3 The trip-planning application
To get to the final software product, that is the trip
planning application, we follow the steps: analyzing
the application demands, application modules
design, choosing the technologies and modules
implementation, installation and testing the
application.

3.1 The application demands analysis
We suppose the following scenario: a person wants
to plan a trip. He must select the city of departure,
arrival city, the departure time, the return date, the
number of accompanying persons, and the quality of
desirable services. First, he makes an on-line ticket
reservation. Then, he makes reservation for a hotel
room in the arrival city. He also can rent in that city
a car for a specific period.

Thus, we need to keep information about flights,
hotels, cars, and clients and to offer services to
access this information when a client wants planning
a trip, to make his options, to pay for requested
services.

3.2 The modules design
Because we want an application based on Web
services, we need for our scenario a Web service for
flight ticket reservation, a Web service for hotel
room reservation, a Web services for car rental, a
Web service for the payment, and a Web service for
payment and invoicing. Each one of these Web
services must have an associated database. Thus, we
need a database with information about flights, a
database with information about hotels, a database
with information about cars and a database with
information about client’s cards.

For ticket reservation, the Web services display
all the flights available at the requested time, price

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 116

and duration of each one. The client chooses one of
the displayed flights, and then fills the ticket
reservation form. After the reservation will be
invoked the Web service for payment and invoicing.
If bank transaction commits, this service will send an
invoice to the client. If transaction abort because
there isn’t any card for the client, or there isn’t
enough money on respective card then the service
will delete previous reservations. If there aren’t
flights at requested time or the client do not chose
any flight then the client is interrogated for deleting
the other reservation (hotel and/or car). The same
algorithm applies to the next steps, which are
reserving the hotel room and car rental.

Thereby, to achieve such functionality, the Web
service for flight reservation must offer the
following methods: displaying a list of airports
linked by flights, returning a list of flights available
at the requested time with available places,
modifying in the database the number of occupied
places corresponding to selected flight, registering
personal client data in the database, issuing an
invoice, deleting the reservation and the places when
the client cannot reserve hotel rooms or car, deleting
issued invoices in the previous circumstances ant
returning the money back to the client account.

The Web services for reserving hotel rooms and
car rental are similar.

The Web service for payment and invoicing is a
composite Web service. For reserving a flight this
service can issue an invoice invoking a method of
the reserving flights Web service or can delete the
reservation invoking appropriate method of the same
Web service. For payment, the composite Web
service invokes a method of the payment Web
services.

Fig. 2 shows the Flights database diagram:

Fig. 2 Flights database diagram

Fig. 3 shows the UML (Universal Modeling
Language) activities diagram for flight ticket
reservation [8]:

Fig. 3 The UML activities diagram for flight ticket
reservation

Fig. 4 shows the composite Web service for
payment and invoicing for hotel services:

Fig. 4 The composite Web service for payment and
invoicing for hotel services

Fig. 5 shows the UML sequence diagram of Web
services for flight ticket reservation:

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 117

Fig. 5 The UML sequence diagram of Web services for flight ticket reservation

3.3 The modules implementation
For implementing the data support level, that means
the databases, we chose MySQL 4.1 [9].

For implementing the application business logic
level, we chose the J2EE (Java 2 Enterprise Edition)
technology, that offers an interface for database
accessing, JDBC (Java Database Connectivity) and
also a support for creating and developing simple
Web services and Oracle BPEL Process Manager for
development and execution of composite Web
services, that means BPEL processes [7].

For implementing Web clients who access the
Web services, we use the JSP (Java Server Pages)
technology [10]. A JSP page can change
dynamically its content depending on the client’s
actions.

3.4 Components deployment and testing
Fig 6. shows the UML diagram of deployment
components:

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 118

Fig. 6 The UML diagram of deployment components

We measure the response time of Web services

to client’s requests. The response time is defined as
time between the start of a client request and the end
of the response received by the client’s terminal.
The tools used for measure the response time was
Mindreef SOAPscope 4.1 [11]. This tool allows the
capture of SOAP messages and the measurements of
different Web services parameters.

In the first test was invoked the
search_Id_city(String name) method from the ticket
reservation Web service running ten times with the
same argument. Fig. 7 shows the result:

Fig. 7 The response time for a repetitive method
invocation

At the first invocation the response time is higher
that the response time of subsequent invocations
because a servlet is created and then reused.

The second test measured the response time for
flight ticket payment and invoicing composite
service. Fig. 8 shows the result:

Fig. 8 The response time for the composite service

To compare the response time of composite
service with the response time of the simple services
we measure independently the response time for
checkAccount() method of banking service and
invoicing() method of flight ticket reservation
service. Both methods are invoked by the above
composite service and measured in the Fig. 8. We

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 119

maintain the same input parameters. The next two
figures show the result:

Fig. 9 a) The response time for checkAcount()
method

Fig. 9 b) The response time for invoicing() method

Adding the response times for separately
invocation of the two methods, it can be observed
that the response time for the composite service is
10%-20% higher that the cumulative response time
for the two separate services.

4 Conclusion
Although the utilization of composite services is a
slower solution, it is accepted due to the huge

advantage of implementing complex processes
reusing Web services that are already implemented
and can be easy discovered searching in services
registry.

Acknowledgements
The Romanian National University Research
Council under grant EL100608 supports this work.

References:
[1] Stoica Cristina, Stoica Valentin, Ionescu Felicia,

Design Aspects for Fast and Concurrent Data
Access, WSEAS Transaction on Information
Science & Applications, Issue 5, Volume 1,
November 2004, Rethymno, Creta, Grece, 24-26
October 2004, pp. 1283-1288, ISSN 1790-0832.

[2] Felicia Ionescu, Cristina Elena Stoica, George
Valentin Stoica, Şerban Balamaci, Advanced
Replication Techniques for E-activities,
Proceedings of International Conference on
Computational Intelligence for Modeling,
Control & Automation CIMCA 2005 jointly with
International Conference on Intelligent Agents,
Web Technologies & Internet Commerce
IAWTIC 2005, Vienna, Austria, 28-30 November
2005, pp. 904-909, IEEE Computer Society,
Volume II, ISBN-10: 0-7695-2504-0.

[3] Steve Graham, Simeon Simeonov, Toufic
Boubez, Doug Davis, Glen Daniels, Yuichi
Nakamura, Ryo Neyama, Servicii Web cu
JavaTM-XML, SOAP,WSDL si UDDI, TEORA
Bucharest, 2003.

[4] http://www.sun.com/software/sunone/faq.xml
[5] Eric Armstrong, Jennifer Ball, Stephanie

Bodoff, Debbie Bode Carson, Ian Evans, Dale
Green, Kim Haase, Eric Jendrock, The J2EETM
1.4 Tutorial, Sun Microsystems, 2004.

[6] Nikola Milanovic, Current Solutions for Web
Services Composition, IEEE Internet Computing,
2004

[7] http://otn.oracle.com/bpel, BPEL – Learn by
Example.pdf

[8] Karin Palmkvist, Bran Selic, Advanced UML
Modeling, 2000

[9] http://www.mysql.com/
[10] Hans Bergsten, JavaServer Pages, O’Reilly,

2002
[11]http://www.mindreef.com/products/soapscope/s

s_3_4_upgrade.php

Proceedings of the 5th WSEAS International Conference on E-ACTIVITIES, Venice, Italy, November 20-22, 2006 120

