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Abstract: - The school timetabling problem is a specific kind of timetabling problems. It is characterized by 
similar sets of subjects used among schools in different years, and by great extent of human factor involved. 
This particularity lets us to hope existing timetables to be useful information for actual timetabling process, and 
neural networks to be a suitable technique to assist it. This paper describes experiments on using neural 
networks as part of the fitness function of a GA-based school timetabling system, the model of what has been 
proposed by the author earlier. The experimental results show ability of neural networks to be applied for 
timetable evaluation, as well as reveal various side effects of using neural networks within GA-based school 
timetabling. 

 
Key-Words: - Neural Networks, School Timetabling, Genetic Algorithm, Fitness Function 
 
1   Introduction 
This paper is to finalize a series of experiments on 
neural networks ([5], [6], [7]), and the goal of the 
paper is to show possible effect of using neural 
networks within GA-based optimization, specifically 
school timetabling. 

The main idea of using neural networks as part of 
timetabling system comes from existing school 
timetables recognized to be useful information to 
build new ones [7]. Neural networks trained on 
existing solutions (i.e., timetables) can be helpful 
with evaluating the actual ones within GA-based 
optimization. GAs themselves are often applied to 
solve optimization problems such as the timetabling 
problem [1], [2]. 

The possible application of neural networks 
could target problems for which evaluation of 
solutions is a complicated task. To build evaluation 
rules, strict criteria are required, and these could be 
hard to extract or even recognize, so neural networks 
could benefit with reducing effort on defining such 
rules. 

Although the proposed approach is very problem-
specific one and is not to be regarded a universal 
method, the experimental results show the described 
technique of using neural networks to be able to 
improve upon the optimization process. 
 
 
2   GA-Based School Timetabling 
The timetabling problem is highly constrained 
combinatorial problem, and GAs are typical means 
to solve such problems. GAs exploit principles of 

evolutionary biology, including such biology-
originated techniques as inheritance, mutation, 
natural selection, and recombination. 

A population is a main object dealt by GA. It 
consists of individuals, which are being improved 
during an evolutionary process. When solving 
optimization problems by GA, the single solutions 
are regarded as individuals. The operation of a GA is 
a cyclic process, which resembles alternation of 
generations in biological systems. 

An important requirement for the problem 
domain using GAs, is a possibility to evaluate (rate) 
solutions at any phase of the evolutionary process. 
The rating is done by the fitness function. [4]

Various approaches of using GAs in timetabling 
differ mostly in terms of heuristics applied, e.g., 
using problem-specific genetic operators, as well as 
selection and reproduction techniques [1], [2], [3]. 

In this paper GA-based school timetabling serves 
as a framework to show the possible effect of using 
neural networks within the fitness function of a ge-
netic algorithm to solve some optimization problem. 
 
 
3   Neural Network as Part of a GA-
Based School Timetabling Model 
3.1   The Proposed Model in General 
[7] proposes a school timetabling model (Fig. 1), 
where fitness function has been reinforced by neural 
networks trained on existing timetables using a 
specific technique with randomly generated training 
patterns [6]. Unlike most approaches of GA-based 
timetabling, the proposed technique is particularly 

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006  117



focused on the fitness function, i.e. on evaluation of 
timetables. Design of genetic operators and other 
algorithms altering the population has been left out 
of the scope of this paper. 

The possible benefits of the proposed model 
where a neural network is used as part of the fitness 
function can be viewed from two aspects [7]: 

1. Replace one or more soft constraints by a 
neural network, thus facilitating the effort of 
defining the constraints; 

2. Assuming the complete set of constraints, it is 
hard and practically impossible to define – 
complement existing constraints with a neural 
network in order to improve upon timetable 
evaluation. 

The effect of the 2nd aspect is very hard to verify, 
as it would need a massive estimation of experts. 
Therefore, in this paper the proposed model will be 
examined just according to the 1st aspect. 
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Fig. 1. GA-based school timetabling model reinforced by neural networks 

 
In the proposed model, outcomes from the functions 
realizing the hard-defined evaluation functions, and a 
neural network are combined to obtain the final 
evaluation of a timetable. 

 
 

3.2   Neural Networks as Evaluators of 
Timetables 
Neural networks were designed to evaluate 
timetables or, more precisely, substitute for hard-
defined evaluation functions to some extent. 
 

 
PROCEDURE TRAINNETWORK(NET:NeuralNetwork, 

TRAINING_SET:ReadyClassTimeTables,RANDOM_RATE:0..1) 
epoch_size:=ROUND(SIZEOF(TRAINING_SET)/(1-RANDOM_RATE)) 
REPEAT 
    FOR i:=1 TO epoch_size 
        rnd:=GETRANDOMVALUEBETWEEN(0,1) 
        IF rnd<RANDOM_RATE THEN 
            pattern:=GENERATERANDOMPATTERN() 
            desired_value:=1 
        ELSE  
            pattern:=CHOOSEPATTERNFROM(TRAINING_SET) 
            desired_value:=0 
        END IF 
        TRAINONSINGLEPATTERNSUPERVISED(NET,pattern,desired_value) 
    END FOR 
UNTIL FINALCONDITIONMET(NET) 

Fig. 2. A supervised learning algorithm with additional randomly generated training patterns [6]
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Comments on the algorithm depicted at Fig. 2. 
• RANDOM_RATE (τ) denotes the proportion of using randomly generated patterns in the learning 

process. 
• An average epoch consists of training on each existing pattern once, and training on randomly 

generated patterns. The bigger is RANDOM_RATE, the bigger is an epoch. 
• For a random pattern the desired value is 1, but for an existing (i.e., good) one – 0. That’s because the 

fitness function operates as penalty function. 
 

 
The only source of information is ready-made 

timetables of various schools from recent years. A 
set of existing and valid timetables is incomplete to 
be the training set for evaluative neural networks, 
because it contains just positive patterns. These 
preconditions require modifications in the training 
algorithm of neural networks. The main idea of the 
proposed algorithm (Fig. 2) is to expand the training 
set on randomly generated patterns to partially 
compensate for the lack of the complete training set. 

 
 

3.3   Assessment of the Model 
The benefits of using neural networks within GA-
based timetabling system were computed with 

respect to ability to substitute for some hard-defined 
evaluation functions within the total fitness function 
ϕ(⋅) [7]: 
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where ϕi(⋅) – the evaluation function according to the 
constraint i; αi – the weight of the constraint i; Τ – 
the timetable to evaluate. 

The total fitness function would be used as a 
benchmark to examine the model. 

 

 
PROCEDURE RUNEXPERIMENTS(FILE:FileName, TRAINING_SET:ReadyClassTimeTables, 

RAW_SET:UnscheduledTimetables,EVAL_FUNCT_COUNT:Integer) 
NET:NeuralNetwork 
TT,TTR,TTS:TimeTable 
EvalReduced,EvalSoftened:Real 
GAConfig:GAConfiguration 
NNConfig:NeuralNetworkConfiguration 
RANDOM_RATE:0..1 
REPEAT 
    NNConfig:=GENERATENNCONFIGURATION() 
    RANDOM_RATE:=CHOOSEVALUEFROM({0,0.2}) 
    NET:=CREATENEURALNETWORK(NNConfig) 
    TRAINNETWORK(NET,TRAINING_SET,RANDOM_RATE) 
    GAConfig:=GENERATEGACONFIGURATION() 
    TT:=CHOOSEPATTERNFROM(RAW_SET) 
    FOR func:=1 TO EVAL_FUNCT_COUNT 
        TTR:=RUNGAWITHREDUCEDFITNESSFUNCTION(TT,GAConfig,func) 
        TTS:=RUNGAWITHSOFTENEDFITNESSFUNCTION(TT,GAConfig,func,NET) 
        EvalReduced:=EVALUATEWITHTOTALFITNESSFUNCTION(TTR) 
        EvalSoftened:=EVALUATEWITHTOTALFITNESSFUNCTION(TTS) 
        REGISTER(FILE,NNConfig,GAConfig,EvalReduced,EvalSoftened) 
    END FOR 
UNTIL BROKENBYUSER() 

Fig. 3. The algorithm of the experimentation to gather data to examine the proposed model 
Comments on the algorithm depicted at Fig. 3. 

• RUNGAWITHREDUCEDFITNESSFUNCTION(⋅,⋅,⋅) – runs a GA using the reduced fitness function ϕf(⋅) as 
the fitness function (3), returns ready timetable. 
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• RUNGAWITHSOFTENEDFITNESSFUNCTION(⋅,⋅,⋅) – runs a GA using the softened fitness function ϕf+(⋅) as 
the fitness function (3) , returns ready timetable. 

• REGISTER(⋅,⋅,⋅,⋅,⋅) – registers the results for further analysis. 
• TRAINING_SET – the set of ready-made timetables used as the training set for the neural network. 
• RAW_SET – the set of unscheduled timetables of various schools, i.e. sets of lessons to be scheduled. 

 
 
The two following notions, to be used to assess 

the model, are the reduced fitness function (2) and 
the softened fitness function (3). 

The reduced fitness function ϕf(⋅) refers to the 
total fitness function reduced to have the fth 
evaluation function eliminated. 
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where f – the index of the evaluation function to 
eliminate. 

The softened fitness function ϕf+(⋅) refers to the 
according reduced fitness function complemented 
with a neural network. 

 , (3) ( ) ( ) ( )Τ+Τ=Τ+
00ϕαϕϕ ff

where ϕ0(⋅) – the evaluation function realized by a 
neural network; α0 – the weight of the neural 
evaluating function. 

The proposed model was tested using the 
algorithm described in Fig. 3. The goal of the 
experimentation is to show results of the softened 
function to be better than the results of the reduced 
functions for some evaluation function f. 

 
 

4   Description of the Experimentation 
The goal of the experimentation was to examine the 
effect of neural networks within the GA-based 
timetabling system, and to show ability of neural 
networks to partly substitute for hard-defined 
evaluation functions. Experiments were run on 8 
different schools according the algorithm described 
in Fig. 3, and then the results were analyzed. The 
total amount of experiments run and analyzed was 
1850. In order to do the research, as well as to run 
the final experiments; an original software system 
was designed by the author. 

 
 

4.1   Representation of Timetables for a 
Neural Network 
4.1.1   Main principles 
As the main goal of the experimentation is to show 
the effect of using neural networks, then the 
representation principles of timetables for neural 

networks are of a great significance. The following 
two factors were considered to establish the 
representation of timetables. 

• Subjects are the only available information 
of existing timetables of various schools 
suitable to support school timetabling 
process. Classes, teachers and rooms could 
not be used because of differences among 
schools and even school years. Thus a 
timetable can be viewed as a sequence of 
subjects. 

• Subjects can be grouped into categories (e.g., 
exact or humanitarian). Grouping of subjects 
can reduce computing resources to process 
timetable information. 

Therefore a timetable of one class k can be 
defined as a sequence of subject categories (i.e., a set 
of subject categories arranged over time) [7]: 

 ( ) p

iik s
1=

=Τ σ , (4) 
where si – the subject for class k in period i (can be 
null); p – the number of available periods in one 
week; σ(sigma) – function that defines grouping of 
subjects into categories, described in (5). 

egoriesSubjectCatSubjects →:σ  (5) 
(E.g., mathematics belongs to the exact subjects, and 
history to the humanities.) 

The author has defined the function σ, one that 
groups subjects into 12 different categories. 

Former experiments have shown the use of 
subject categories (instead of subjects) to be 
representative enough to code timetables. 

 
4.1.2   Available training set 
10 different ready-made school timetables were 
available consisting of 208 different class-timetables. 
Each class-timetable was represented like in (4). 
Each period of a timetable (i.e., one lesson) was 
represented as a tuple of 12 values corresponding to 
12 subject categories (value 1 – if the subject 
category is represented in the period, 0 – if not). 
Thus a class-timetable for one week was a tuple of 
600 values (5 days × 10 periods per day × subject 
categories). 
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4.2   Configuration of the Experimental 
Environment 
4.2.1   Configuration of a neural network 
For each experiment, a new neural network was 
created and trained. Neural networks were MLPs 
(600 inputs, one hidden layer with 5 neurons, and 
one neuron in the output layer). Neural networks 
were trained according the algorithm described in 
Fig. 2. During one iteration, a single class-timetable 
was being exposed to the network. 
 
4.2.2   Configuration of the GA system 
The size of population was 10. 3 individuals 
(timetables) were replaced in each cycle. Elitism 
concerned 1 individual. Mutation was the only 
genetic operator. Mutation was applied on 
reproduced individuals, thus mutation itself didn’t 
replace the parents. Mutation rate: 20%. 4 functions 
were defined to evaluate timetables and to be 
replaced by a neural network (Section 4.2.3). 
Initially lessons of a timetable were arranged 
randomly over time. The fitness function was a 
penalty function operated according equations (2) or 
(3). In the case of neural networks (3), the weight 
coefficient (α0) was set to 0.01, thus the impact of 
the neural network to the overall performance was 
established to be rather low. To evaluate a timetable, 
the evaluation function was applied to the each class-
timetable separately, and then the average value 
taken for the total evaluation. 

 
4.2.3   Hard-defined evaluation functions 
To examine the possible effect of neural networks 
within a GA-based optimization, a fitness function 
consisting of 4 four different evaluation functions 
were realized (according the constraints listed in 
Table 1). All the criteria were related to arrangement 
of lessons for students, and all the evaluation 
functions were exploited as ones to be replaced by a 
neural network ((2) and (3)). 

 
Table 1. Soft constraints realized through appropriate 
evaluation functions for the experiments. 

# Description of the constraint 
1 Arrange lessons uniformly over the week 

2 Minimize the gaps between lessons for 
students 

3 As far as possible, align lessons to the 
beginning of the shift 

4 
Balance the layout of lessons in terms of 
themes (e.g., don’t schedule to many exact 
subjects in row) 

 

 
5   Experimental Results and 
Conclusion 
5.1   Obtained results 
The outcome of the experiments was the evaluation 
values for timetables, ones created by a GA using 
reduced or softened fitness functions (See Section 
3.3). The subject of analysis of obtained data is to 
find out whether timetables generated, using the 
softened fitness function as the fitness function, are 
better then ones generated with assistance of reduced 
fitness function, i.e., whether some of hard-defined 
evaluation functions could be replaced by a neural 
network. 

The experimental results showed that only 
replacement of the function #3 by a neural network 
brought slightly better results (Fig. 4). 

The results for functions #1 and #2 were even 
worse, but for the function #4 – neutral, i.e., neither 
improvement, nor worsening. 
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Fig. 4. The average results for the replacement of the 

evaluation function #3 by neural networks 
 
Fig. 4 shows a part of experimental results in a form 
of average evaluation values. These results represent 
the effect of neural networks in replacing the 
evaluation function #3 (“Align lessons to the 
beginning of the shift”) in the above-described 
school timetabling system. As the fitness function 
operates as penalty function, smaller values mean 
better evaluation. 

The results, shown in Fig. 4, reveal 3 groups: 
• Group X (1.0265). Neural networks were 

used within the fitness function (3), and the 
random rate (τ) was set to 0.2, i.e., randomly 
generated patterns had been used. 

• Group Y (1.0356). Neural networks were 
used within the fitness function (3), but the 
random rate (τ) was set to 0, i.e., neural 
networks were trained only on positive 
patterns. 

• Group Z (1.0439). No neural networks were 
used within the fitness function (2). 
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5.2   Conclusions for the Current 
Experimentation 
The obtained results infer the following conclusions: 

• As the groups X and Y (Fig. 4) show better 
results than the group Z, it can be stated that 
neural networks are able to substitute, in 
part, for the evaluation function #3. 

• As the group X shows better results then the 
group Y, it can be stated that using randomly 
generated training patterns to train neural 
networks (described in Section 3.2) is 
suitable in this case. 

The little impact of the neural networks to the 
results can be explained by the small weight value 
used for a neural network (α0=0.01). Bigger weight 
values for the neural network got the fitness function 
dramatically degraded. 

 
 

5.3   Final Conclusions 
The experimental results demonstrate neural 
networks to be able to substitute for hard-defined 
evaluation functions in certain cases, as well as 
approve the use of the supervised training method for 
neural networks, proposed by the author earlier. 

Using neural networks to successfully solve 
similar problems could require a massive problem-
specific investigation. The experimentations, 
conducted by the author, have shown the progress of 
adaptation of neural networks for such specific 
problems to demand big efforts.  

Although this paper doesn’t provide with know-
how of school timetabling, nevertheless it shows 
neural networks to be applied in solving such an 
uncommon problem like timetable evaluation. 
 
 

References: 
[1] N. Arous et. al., Evolutionary Potential 

Timetables Optimization by Means of Genetic 
and Greedy Algorithms, Proceedings of the 1999 
International Conference on Information 
Intelligence and Systems (ICIIS), 1999 

[2] C. Fernandes et. al., High School Weekly 
Timetabling by Evolutionary Algorithms, 
Proceedings of the 1999 ACM symposium on 
Applied computing, 1999, pp. 344-350 

[3] V. Tam, D. Ting, Combining the Min-Conflicts 
and Look-Forward Heuristics to Effectively Solve 
A Set of Hard University Timetabling Problems, 
Proceedings of the 15th IEEE International 
Conference on Tools with Artificial Intelligence 
(ICTAI’03), 2003 

[4] J. Zuters, An Adaptable Computational Model 
for Scheduling Training Sessions, Annual 
Proceedings of Vidzeme University College 
“ICTE in Regional Development”, 2005, pp. 110-
113. 

[5] J. Zuters, An Extension of Multi-Layer 
Perceptron Based on Layer-Topology, 
Proceedings of the 5th International Enformatika 
Conference’05, 2005, pp. 178-181. 

[6] J. Zuters, Towards Multi-Layer Perceptron as an 
Evaluator Through Randomly Generated Training 
Patterns, Proceedings of the 5th WSEAS 
International Conference on Artificial 
Intelligence, Knowledge Engineering and Data 
Bases (AIKED 2006), 2006, pp. 254-258. 

[7] J. Zuters, An Ensemble of Neural Networks as 
Part of a GA-based Model to Solve the School 
Timetabling Problem, Local proceedings of the 
7th International Baltic Conference on Databases 
and Information Systems (Baltic DB&IS 2006), 
2006, pp. 175-182 

 

 

Proceedings of the 5th WSEAS Int. Conf. on COMPUTATIONAL INTELLIGENCE, MAN-MACHINE SYSTEMS AND CYBERNETICS, Venice, Italy, November 20-22, 2006  122


