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Abstract: - In this article authors present a simple strategy for displacement solution calculation near geometrical 
singularity points. Solution improvement in singularities is achieved modifying physical coordinate matrix used in 
least square problem equations: instead of the standard quadratic polynomial a new polynomial with singular elements 
is taken. Proposed algorithm is incorporated to the adaptive finite element analysis and tested with real engineering 
structure. 
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1. Introduction 
In many applications the primary aim of a finite 
element (FE) analysis is to obtain few design 
quantities with a prescribed accuracy. In structural 
mechanics such quantities as stresses, displacements 
or surface tractions are often important for design 
decisions. For this reason special attention should be 
paid to how our FE model is adapted for computing 
these quantities and to which techniques are used to 
extract these quantities from the primary FE results. 
In order to perform a reliable finite element 
simulation a lot of works have been made trying to 
integrate the finite element analysis, error estimation 
and automatic mesh modification [1–5]. But 
sometimes even very effective adaptive mesh 
refinement strategy does not give us a suitable result 
if our problem domain is caused by re-entrant 
corners and abrupt changes in material properties. 
Singularities occur at crack tips or at interface 
problems and are of great interest from the point of 
view of failure analysis [6, 7]. Singularities and 
unbounded domains cause difficulties in standard 
finite element analysis because in the vicinity of the 
singular points they depend on the structure of eigen 
values and eigen functions which may not be known 
a priori [8, 9]. For this reason an improved method 
for solution calculation near singular points is 
presented in this paper. After incorporating this 
method into h-adaptive finite element analysis and 
testing with different mesh optimality criteria it can 
be stated that proposed strategy gives us final 
optimal mesh with minimal element and iteration 
number. The efficiency of the proposed strategy is 
demonstrated with real engineering problem.  

2. Basic Concepts of the Adaptive 
Finite Element Analysis 
With the help of reliable error estimation procedures 
available today, a suitable element size distribution 
can be predicted and new mesh is constructed using 
adaptive mesh generation algorithms. Prediction of 
finite element size is based on the results of a 
previous stage of analysis. In this manner, 
subsequent meshes of better quality are designed 
adaptively. After a few trials, solution with an 
accuracy corresponding to a user specified tolerance 
is obtained. Adaptive finite element analysis 
algorithm uses intermediate results for mesh 
modification in such way, that the final mesh is in 
some sense optimal. Iterative process is controlled 
by an error tolerance.  
 The classical adaptive algorithm starts from the 
user defined initial mesh and user specified error 
tolerance. After that FE-solution is computed on a 
given mesh. Then the resulting error distribution is 
evaluated and compared with the tolerance – if the 
error tolerance is not met, a new mesh is generated 
based on the obtained error distribution. Analysis is 
terminated if the estimated error is less than or equal 
to the tolerance. 
 The most important ingredient of the error 
estimation is the construction of the new solution of 
a higher quality since the exact solution for 
complex-engineering problems is generally un-
known. Typically, this new improved solution is 
obtained by a posteriori procedure, which utilizes 
the original finite element solution itself. The 
essence of the postprocessed error estimator is to 
replace the exact solution with a postprocessed 
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solution of higher quality: 
h

uu  -  =  uuee ∗≈ ,     (1) 
where  ue  is the point-wise estimated error. Using 
the improved solution we have an error estimation: 
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In practice we calculate this norm by summing over 
all elements in whole domain Ω: 

∑ ∑ ∫
nel

1=i

nel

1=i
iu

T
u

2
i

2  d = e = e
iΩ

ΩeLe ,  (3) 

where Ωi is an element domain and nel is the total 
number of elements. 
 The absolute error defined by an energy norm is 
not convenient for use in practical computations. 
The dimensionless forms are favored and are 
customarily expressed as 
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where u  is the strain energy norm, η and ηk  are 
the relative global and relative element error, 
respectively. 
 The problem in h-adaptivity for finite element 
methods may be formulated as follows – construct a 
finite element mesh with as few degrees of freedom, 
as possible, such as that 

TOLηη ≤ ,     (5) 
where  TOLη  is the maximum permissible error.  
 This is a non-linear minimization problem, 
which may be solved, approximately in an iterative 
process. The mesh is redefined using new element 
size calculated according formula: 
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where – an old mesh element size, ih iξ – element 
refinement parameter, based on some mesh 
optimality criterion, p – degree of  shape functions 
polynomials. 
 It is usually agreed that a solution is acceptable if 
the global error in energy is below a specified value 
of the total strain energy:  

ue η≤ ,     (7) 
there η is the user’s specified value of the 
permissible relative global error.  
 According this equation the global error 
parameter gξ  is defined as 

ueg ηξ =      (8) 

and the local error indicator iξ  is defined as 

irii ee=ξ .     (9) 

There 
i

e is the actual error in each element and 

ir
e is the required error norm in the element. This 

definition of the required error in each element 

ir
e is a key issue and strongly affects the 

distribution of element sizes in the mesh.  
 In general both local and global criterion must be 
satisfied. This allows the definition of element 
refinement parameter using both local and global 
error parameters: 
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This element refinement parameter was first 
introduced in [10] and since then was used as the 
basis for defining the new element size in a general 
adaptive re-meshing strategy. 
 In the adaptive analysis finite element solution is 
sought not only to satisfy a prescribed accuracy but 
to be associated with a reasonably optimal mesh 
also. A very popular mesh optimality criterion for 
elliptic problems is that a mesh is said to be optimal 
if the distribution of the energy norm is equal 
between all elements [11]. According this definition 
the required error for the element is defined as the 
ration between the global error and the total number 
of mesh elements. Then element refinement 
parameter is defined as: 
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 Parameter iξ can now be interpreted as the ratio 
of the element error and the distributed value of the 
permissible error over the mesh. Parameter 1>iξ  
will indicate that the element should be further 
refined and 1≤iξ  means that both global and local 
error conditions are satisfied. The new element size 
is obtained according (6) formula. 
  
 
3. Postprocessing Error Estimation 
Accounting Singularity Effect 
 
 
3.1 Problem statement 
Let us suppose we have prismatic planar domain Ω 
with the interior angle π>ω . C the singular point 
of Ω. Radius R is the value defining singular zone 
boundary for Ω (Fig.1).  

In general solution u has singular behavior near 
singular points and can be decomposed into singular 
and regular parts according formula [12]: 
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Fig.1 Problem domain 
 

( ) ( ) RRs usinrxruuu +⋅⋅⋅=+= λϕγξ λ ,          (12) 

ωπλ = .                            (13) 

There r,φ are polar coordinates, ( )rξ  is a smooth 
function ( ( ) 1=rξ  for Rr < , ( ) 0=rξ  for Rr > , R 
is a constant), ( )xγ  is a coefficient 
 
 
3.2 Displacement solution calculation near 
singular point 
In order to use (12) formula in adaptive finite 
element analysis we must find regular and singular 
parts of the solution u. 

As a regular part we can take finite element 
solution . For finding singular part, we 
will extend superconvergent patch recovery for 
displacements (SPRD) technique. The idea of the 
SPRD is to define a new displacement field of p+1 
order over the patch elements [13]. This new field 
requires to be a least square fit to the original finite 
element solution at some points where the accuracy 
of finite element solution is higher. It has been 
known that the nodal points of the finite element 
approximation are found to be the exceptional 
points at which the prime variables (displacements) 
have higher order accuracy with respect to the 
global accuracy [14]. 

FEMR uu =

The new displacement field over the element 
mesh is calculated solving equation system for least 
square problem: 
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There [ ]221 yxyxyxQ =  is a row matrix 
containing monomial term of physical coordinates 
of p+1 order, and b is a set of unknown parameters 
to be determined.  is a positive weighting 
function with unity value for the element, defining 
the patch, and which decreases monotonically with 

( )xw

 

 
 

1
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Fig.2 Element patch construction for least square 
problem: (1) – traditional element patch; (2) – 
singular element patch.  
 

 
Fig.3 Definition of additional points near singularity 
 
increasing distance away from master element. 

  Let us suppose domain Ω is covered by N 
triangle elements. Current mesh element is said to 
be singular if at least one its nodes is placed at the 
distance less or equal to radius R. Set of all singular 
triangles defines singular zone of Ω and forms the 
patch for the least square problem. 
 The main idea of least square method 
modification is to replace row matrix containing 
monomial term of physical coordinates with new 
one containing singular monomials for all nodes of 
this singular patch. To realize this instead of 
standard quadratic polynomial we will take only one 
singular monomial:   
( ) ( ) ( )[ ]λφξφ λ sinrr,rQxQ SING ⋅⋅=→ .            (15) 

 According such modification equation system for 
least square problem will be solved with two 
different element patch types (Fig.2) and two 
different row matrixes depending on whether node 
belongs to singularity zone or no. 
 In this place we have one problem left – singular 
point C in polar coordinates is defined as 0=r  and 

[ ]πφ 20,∈  and singular polynomial can not be 
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defined correctly in point C. In order to solve this 
conflict for all mesh elements containing singular 
point C we calculate additional points Ci placed at a 
very near position from original point C (Fig.3): 
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 In these equations Ai and Bi are the nodes of  
singular element, Di – point on bisector from point 
C, N – number of mesh elements, h – the size of 
smallest mesh element, iCD  – the distance from 
point C to point Di, ( ]10,const∈  – the smoothing 
value. The definition ter t allows us to 
control positions of new C

 of parame
i: the ratio Nh  

guarantees that new point Ci  will be bound  
sides of singular element, and division by 

ed by
iCD   

guarantees that Ci  will be placed near original point.  
 After solving least square method equations with 
singular patch and singular polynomial we get 
coefficient vector bSING and for each additional 
singular point Ci we can calculate displacement 
solution with included singular part: 
( ) ( ) ( ) =+= jSjFEMj CuCuCu   

( ) ( ) ( )jNG C . SIjSINGjFEM bCQCu ⋅+=            (19) 
 General solution for singular point C is obtained 
using extrapolation from additional singular 
displacement solutions in points Ci. 
 After the improved solution is calculated in point 

 wC e can take it instead of the exact solution in the 
posteriori error estimation: 

h
SINGSINGu,SINGu,  -  =  uuee ∗≈ ,              (20) 

there SINGu,e  is the point-wise mat

. Numerical Examples 
, which has fixed 

rimary 
m

esti ed error for 
singular zone of the problem domain.  
  
 
4
A 2D frame structure (Fig. 4)
support at the bottom of the two vertical walls, is 
subjected to uniformly distributed load of intensity 
1000 N.  Plane stress conditions are assumed with 
Poison’s ratio ν=0.3 and Young’s modulus E=105 

Pa. Permissible error tolerance is η = 15 %.  
 In structural mechanics problems the p
ai  is to obtain final optimal mesh with as small 
element number as possible according given 
permissible error. In order to achieve this goal we  

 
Fig.4  2D-frame structure definition 
 
should find the way to improve solution in the first 
adaptive mesh refinement strategy steps when total 
element number is quite small, because after few 
iterations element number is increased rapidly and 
obtained solution does not changing considerably. 
 For this reason two tests were carried out. 
Starting from the same uniform 302 triangle element 
mesh adaptive finite element analysis was 
performed two times: first time adaptive finite 
element analysis was performed with traditional 
error estimation (when singularity effect is not 
accounted) and after that adaptive finite element 
analysis was performed using proposed algorithm 
for solution improvement near singular point. In this 
example 10 singular points are detected. Singular 
zone is defined around each singular point taking 
radius 10.R = . Singular element patch for each 
singular point is combined from all elements having 
at least one node placed at the distance less or equal 
to radius 10.R =  from the current singular point. 
Initial mesh with grey marked singular zones is 
presented in Fig. 5. All calculation data from both 
strategies are placed in Table 1.  
   
Table 1. 2D-frame structure analysis results 

Error analysis, η =15 % 
no singularity 

effect 
with singularity 

effect 

 

η, % El. Nr. η, % El. Nr. 
1st iteration 42.54 302 44,39 302 
2nd iteration 19.74 2790 14.90 7936 
3rd iteration 15.66 5570 - - 
4th iteration 13.58 9311 - - 
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Fig.5 An initial finite element mesh with marked 
singular zones 
 

 
Fig.6 Final finite element mesh, obtained without 
accounting geometrical singularity influence 
 
According first strategy (when singularity effect was 
not accounted) final finite element mesh (Fig. 6) 
according given permissible error η =15 % was 
obtained through four iterations. Final element 
number for this mesh is 9311 elements. According 
second strategy (when singularity influence was 
accounted) final finite element mesh (Fig. 7) was 
obtained only by two iterations and with 7936 
elements in it. It means that according proposed 
strategy it is really possible to reduce iteration and  

 
Fig.7 Final finite element mesh, obtained accounting 
geometrical singularity influence 

A zoom view  

 
element number until final mesh is obtained. 
Besides that we can see that element distribution in 
both final meshes is different: according first 
strategy elements are located more smoothly in the 
whole domain than according second strategy, when 
more and smaller elements are placed in higher 
stress concentration zones. 
 To demonstrate more clearly the advantage of 
the proposed solution improvement strategy near 
singularities an additional comparison of the 
estimated relative errors is performed. 
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Fig.8 Comparison of the obtained relative 
percentage error values only in singular zones of the 
problem domain 
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 Curves in  Fig. 8 are calculated using error data 
only from singular domain (grey color) because 
summing error values from the whole domain the 
impact of improved solution vanishes and is not so 
obvious. Comparing obtained relative percentage 
error values for the singular zone we can see that in 
the first adaptive analysis step difference between 
user defined value and value calculated according 
proposed solution improvement near singular point 
is bigger than difference, obtained between user 
defined value and value, calculated according 
traditional error estimation algorithm. It means that 
displacement solution was really improved in 
singular point zone and obtained error value is 
calculated more precisely than error value without 
singularity improvement. It is proved by authors 
[15] that proposed strategy works in the same way 
with the other mesh optimality criteria also.   
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 In this paper a simple method for postprocessed 
solution improvement near singularities is presented 
and tested. The method is well suited, fully 
automatic and can be used to solve problems with 
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