
Application of Fuzzy C-Means Clustering in Power System 

Model Reduction for Controller Design 
  

SHU-CHEN WANG1     PEI-HWA HUANG2                              CHI-JUI WU3 
Department of Electrical Engineering                   Department of Electrical Engineering 
National Taiwan Ocean University         National Taiwan University of Science and Technology 

            No. 2, Peining Rd., Keelung 20224                      No. 43, Sec. 4, Keelung Rd., Taipei 10607 
TAIWAN                                                              TAIWAN 

 

1
 
 

Abstract: -This paper presents the application of fuzzy c-means (FCM) clustering in the order reduction of 
dynamic models for controller design in a power system. Based on the fuzzy c-means algorithm, a method is 
proposed for clustering the poles and zeros of the original power system model into new clusters from which a 
reduced-order model can be obtained. Then the reduced-order model is used to design a proportional-integral 
type power system stabilizer to improve the damping in system oscillation after a system disturbance. The 
reduced-order model can contain the critical dynamic characteristics of the original model, but let it easier to 
design the controller. Results from a sample power system are presented to show the validity of the proposed 
method. The electromechanical mode of the power system can be improved by the designed power system 
stabilier from pole assignment. 
 
Key-Words: -Power system dynamics, Model reduction, Fuzzy c-means, Fuzzy Clustering, Pole 
assignment.   
   
1 Introduction 
Model order reduction concerns the transformation 
of a higher-order model into a lower-order model 
through some sort of computation [1, 2]. A certain 
relationship between these two models is preserved 
and they are similar in the characteristics under 
consideration. In power system studies, creating a 
dynamic model is the first step for system stability 
research, dynamic behaviors analysis, or other 
system functional tests. As systems become larger, 
their complexity increases and power system analysis 
has to tackle high-order model analysis. However, 
computation on the high-order model is highly 
complex while the final analysis results may have 
unnecessary portions. In this case, having a low-order 
model that maintains the main characteristics of the 
high-order systemt can replace the original system 
and significantly simplify the computational problem 
[3-13]. 

If the stability performance of a power system is 
unable to satisfy the specification, the stabilizing 
controller can be used to improve the dynamic 
characteristics. Without stability disturbance 
compensation, steady-state performance and any 

other performance index are not possible. Therefore, 
a stabilizing controller of power system is needed. 
The most important application of the reduced order 
model let it easier to design of a suitable controller 
for the original high-order system. Many methods 
can used to design a power system stabilizier with 
output feedback scheme. The pole assignment design 
allows the power system for the electromechanical 
mode dynamic to be placed in desired location.  

In this paper, the method based on fuzzy c-means 
clustering analysis [14-20] aims to group poles and 
zeros of a power system transfer function into some 
clusters. For each cluster, the original system poles 
(zeros) can be replaced by each cluster center that 
becomes the new member representative of the 
cluster. All new members representing their 
respective clusters jointly constitute a tentative 
reduced-order model of the original system. The 
reduced-order model is used to design a 
proportional-integral power stabilizer to improve the 
dynamic stability. The results obtained from a sample 
power system models will be illustrated and the 
effectiveness of the method is thus confirmed by the 
example. 
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2 Fuzzy c-means Cluster Analysis 
The method proposed in this paper utilizes fuzzy 
c-means clustering (FCM) analysis [14- 16] to reduce 
the original high-order model into a low-order model. 
Cluster analysis [17-20], of which the task is to 
classify non-processed data into certain categories 
depending on various traits, is a basic tool commonly 
used in several scientific fields. Data in each category 
have the most resemblance while being very 
dissimilar with data from other categories.  

Suppose there are n  data points{ jx }, 1 j n≤ ≤ , 
to be clustered into c  data clusters. Let ijμ  denote 
the degree of membership that jx  belongs to the i th 

cluster. It is noted that 10 ≤≤ ijμ  and 1 1c
iji μ= =∑  for 

each j . Define the fuzzy partition matrix [ ]ijU μ= , 
1 i c≤ ≤ , 1 j n≤ ≤ . Therefore, the objective of the 
fuzzy c-means algorithm is to determine all the 
elements of matrix U . The FCM algorithm is 
essentially an iterative procedure and can be 
formulated as the following six steps in which 
l denotes the iteration number. 

(a) Set the number of clusters c .  Initialize U  
randomly as ( ) [ ]l

ijU μ= , 1l = , 1 i c≤ ≤ . 
(b) Compute the cluster center ic  of each 

cluster:  

1

1

n m
ij jj

i n m
ijj

x
c

μ

μ
=

=

=
∑
∑

                               (1) 

Note that the value of m  normally falls in the range 
of 1.5 3m≤ ≤ . 

(c) Select the weighting jw  of every data point, then 
the weighted data point jW  as  

j j jW x w= ×                                 (2) 

(d) Compute the distance ijd  between the j th data 
point and the i th cluster center: 

ij i jd c W= −                                (3) 

(e) 1l l= + . Compute ijμ  in ( )lU as 

      2/( 1)
1

1
( )ij c m

ij kjk d d
μ

−
=

=
∑

                     (4) 

(f) If ( 1) ( )l lU U ε+ − ≤ , a preset accuracy, then stop; 

otherwise, return to Step (b). 

It is worth noting that in the above algorithm, the 
cluster center ic  of each cluster is referred to as the 
prototype of the cluster and can be considered as the 
representative of that cluster. 

3 Design Method 
Given a state space linear model, dynamic 
characteristics of the system can be best revealed 
from its poles and zeros. The following steps 
comprise the proposed model reduction method and 
controller design. 

Step1: 

After configuring all the parameters of the power 
system and linearizing the system state equations, the 
following system dynamic equations are obtained as 

             
x Ax Bu
y Cx
= +
=

&
                                  (5) 

where , ,A B C  are the state, input, and output 
matrices of the system; x ,  u  and y  denote the state, 
input and output vectors, respectively. 

Step2: 

From Equation (5), the transfer function is found to 
be 
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                 (6) 

Based on the transfer function, the poles and zeros 
can be computed. 

Step3: 

Using the fuzzy c-means algorithm, it can cluster 
separately the poles and zeros in the complex plane to 
obtain the corresponding cluster centers. In order to 
keep the system oscillatory behaviors, poles with and 
without imaginary parts are clustered into distinct 
groups, and zeros are processed likewise.  

Step4: 

The calculated cluster centers replace the respective 
groups of poles and zeros of the original system and 
collectively constitute the set of poles and zeros for 
the reduced-order model. The tentative reduced-order 
model transfer function is thus set as  
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Figure 1. Single-machine infinite bus power system 
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Figure 2. Block diagram of static excitation system 

Table 1 The parameters of generator 

dX = 2pu '
dX = 0.244pu '

doT = 4.18sec

qX = 1.91pu '
qX = 0.17pu '

qoT = 0.55sec

Table 2 The parameters of static excitation system 
AK = 400 AT = 0.05 

FK = 0.025 FT = 1.0 

1
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                         (7) 

Step5: 

In order to make the time response of the 
reduced-order model compatible with that of the 
original higher order model, a gain adjustment factor 
defined by  

0

( )
( ) s

G sk
R s =

=                                (8) 

is used to adjust the steady state value of the reduced 
order model.  

Step6: 

The parameters of a proportional-integral power 
system stabilizier (PSS) are to be determined. The 
power system stabilizier has the transfer funtion as 

  I
PSS P

k
V k

s
ω ω= +                                (9)            

Then the closed-loop transfer function of the system 
is 

( )
( ) ( )PSS P I

y sG s
v s sk G s k G s

=
− −

                  (10)  

4 Example 
Consider the single-machine infinite bus power 
system shown in Figure 1.  

The generator can be represented by the two axis 
model. The equations are obtained: 

      ' ' '
'

1 [ ( ) ]d d q q q
qo

E E X X I
T

⋅

= − − −                      (11) 

' ' '
'

1 [ ( ) ]q FD q d d d
do

E E E X X I
T

⋅

= − − −              (12) 

The parameters of  generator are shown in Table 1. 
The block diagram of static excitation system is 

displayed in Figure 2. The parameters of  static 
excitation system are shown in Table 2. 

Based on the above-described method, the 
reduced order model and the controller design for the 
study system is obtained as follows: 

Step1: 

Choose the state vector x  as 
' 'T
d q FD Sx E E E Vω δ⎡ ⎤= Δ Δ Δ Δ Δ Δ⎣ ⎦  

The definitions for each state variable are  
'
dEΔ  direct-axis transient voltage 
'
qEΔ  quadrature-axis transient voltage 

ω  speed 

δ  rotor angle 
FDE  exciter output voltage 
SV  stabilizier transformer output voltage 

The system matrices are 
8.94 0 0 2.79 0 0
0 1.19 0 0.93 0.239 0

0.136 0.34 0 0.367 0 0
0 0 377 0 0 0
0 0 0 0 20 800
0 0 0 0 0.5 201

A

− −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥− − −

= ⎢ ⎥
⎢ ⎥
⎢ ⎥− −
⎢ ⎥

− −⎢ ⎥⎣ ⎦

 

[ ]0 0 0 0 8000 200TB =  

refU V⎡ ⎤= Δ⎣ ⎦  
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Figure 3. Comparison the original system and the 
reduced model 

 

Table 3 Poles and zeros of the original model 
Poles Zeros 

220 .9−  -8 .940  

-8.302  -1 .000  

-0.213  0 .000  

-0.091  75.030 j7.562 10− ± ×

-0.808 j11.53±   

Table4. Poles and zeros of the reduced model 
Clustered Poles Clustered Zeros 

28.75−  74.875 j7.562 10− ± ×

-0.808 j11.53±   

Table 5 Electromechanical modes of the power 
system 

Eigenvalue without 
PSS Eigenvalue with PSS

-0.808 j11.53±  -2 j11±  

Step2: 

The transfer function of the original model is 
calculated as 

-13 7-1.137 10 ( 1.000)( 8.940)( 5.030 7.562 10 )( )
( 0.808 11.53)( 220.9)( 8.302)( 0.213)( 0.091)

s s s s jG s
s j s s s s

× + + + ± ×
=

+ ± + + + +

The poles and zeros of the original model are 
displayed in Table 3. 

Step3: 

Using fuzzy c-means algorithm, the poles and zeros 
of the original models are processed to obtain some 
cluster centers to be used for representing the original 
poles and zeros.  

Table 4 shows the poles and zeros after 
clustering. In Table 4, the poles ( 28.75− ) are obtained 
from clustering the poles of the original model, 
( 220.9− ), ( -8.302 ), ( -0.213 ), and ( -0.091 ). The poles 
( -0.808 j11.53± ) of the electromechanical mode are 
retained. Regarding the zeros, the clustered zeros are 
( 74.875 j7.562 10− ± × ).  

Step4: 

The cluster center is obtained after computation and 
is used to replace the poles and zeros of the original 
system to become the reduced model. The tentative 
transfer functions for the reduced model are 

-13 7-1 .137 10 ( 4.875 7.562 10 )( )
( 28.75)( 0.808 11.53)

s jR s
s s j
× + ± ×

=
+ + ±

Step5: 

The gain adjustment factor is used to adjust the 
system response to make the reduced-order model 
compatible with the original model. For the study 
system, the gain adjustment factors are calculated as  

( )   0.135
( ) s

G sk
R s λ=

= =  

where λ  is the electromechanical mode. After the 
above steps, the transfer function of the reduced order 
model is ( )= ( )R s kR s′  which is given below  

-14 71 .530 10 ( 4 .875 7.562 10 )( )
( 28.75)( 0 .808 11.53)

s jR s
s s j
× + ± ×′ =
+ + ±

Step6: 

The reduced-order model is used to design a 
proportional-integral power system stabilizer. If the 
electromechanical mode of the closed-loop system is 
to be assigned at =-2 j11λ ± , the parameters of power 
system stabilizier are obtained as 

[ ] [ ]7 .1 1 2 8 9 .8 0P Ik k = − −  

From Table5, the electromechanical mode of of 
the original model system are obviously improved. 

The time responses of the original system with 
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and without controller after a small distrubance is 
shown in Figure 3.  

5 Conclusion 
A model reduction method for reducing the order of 
power system dynamic models in controller design 
has been proposed in this paper. Based on the fuzzy 
c-means algorithm, the proposed method performs 
clustering on the poles and the zeros of the original 
system model into new clusters from which a 
reduced-order model can be derived. The 
reduced-order model that maintains the main 
characteristics of the high-order system can 
significantly simplify the design of a power system 
stabilizer. Results from applying the method to a 
sample power system have been demonstrated to 
show the validity of the proposed method. 
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