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Abstract:  An new generalized genetic algorithm was presented to optimize the support positions of structures 
in this paper. Many new theories such as integer code, real code, population isolation, arithmetical crossover 
and unequal random mutation were used. Numerical examples demonstrate that this generalized genetic 
algorithm can optimize support positions as both elastic and bending rigidity are considered. The method 
presented in this paper has extensive applicability in complicated optimization problem of support positions. 
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1  Introduction 
Optimizing the support positions of a structure can 
improve the performances of structures,It is a usual 
engineering request for a structure to optimize the 
support posittions to maximize its fundamental 
frequency.Optimizing the support positions is 
widely used in many areas such as architecture, 
shipping industry and aircraft industry. Akesson and 
Olhoff [1] described the minimum stiffness, or 
critical stiffness, of an additional lateral support for 
maximum fundamental frequency of a cantilever 
beam. Hou and Chuang [2, 3] developed eigenvalue 
sensitivity equations with respect to the position of 
an intermediate simple support using both domain 
and boundary methods.Additionally, they used the 
material derivative concept to find the optimal 
position of an intermediate support for beams. Wang 
[4] used the classical normal modal method to 
derive the closed-form frequency sensitivity of an 
Euler–Bernoulli beam with regard to a support 
position by treating the support reaction as an 
external excitation imposed on a restrained structure. 
Based on the Rayleigh’ s principle of stationary 
values, Liu et al. [5] derived the closed-form 
formulas for the frequency sensitivity using the 
Rayleigh quotient of the vibration system in 
conjunction with the Lagrange multiplier. Won and 
Park [6] illustrated that the optimal support positions 
rely heavily on the support stiffness. They pointed 
out that in many cases, the optimal support position 

is not unique for plates once the support is stiff 
enough. Sinha and Friswell [7] may be the first to 
apply the shape functions of an element to produce 
the global stiffness matrix of a support located 
within a beam element.With the preceding 
achievements, one can now predict the effect of a 
support movement on the structural frequencies 
without trial and error. WANG Dong [8] optimize 
the positions of simple or point supports to 
maximize the fundamental frequency of a beam or 
plate structure. Both elastic and rigid supports are 
taken into account. The supports are assumed to be 
massless, hold the structure at the nodes of the finite 
element (FE) model and act only on the transverse 
displacements of the supported points. 
The previous approaches to optimize the positions of 
supports have the shortcoming that only the 
longitudinal stiffness of elastic support be 
considered.The main method to solve the 
optimization of support position is to obtain the 
frequency sensitivity equations with respect to the 
position.However, many supports of engineering 
structures not only provide the longitudinal stiffness 
but also cause bending stiffness.Many elastic 
supports can be expressed as the case shown in 
Fig.1.For this elastic support with bending stiffness 
the optimization of its support position is difficult to 
use mathematic optimal method because the 
frequency sensitivity with respect to the position is 
difficult to be obtained 
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Fig.1 An elastic support with longitudinal and 

bending stiffness 
 
Genetic algorithm is an optimization method based 
mainly on the concepts of natural selection and 
evolutionary process. The stochastic nature of the 
method and using a population of design points in 
each generation usually give rise to the global 
optimum. The details of the method can be found in 
many literatures. The classical genetic algorithm 
uses integer code, which has the disadvantages such 
as slow convergence and lower computational 
precision.In this paper the generalized genetic 
algorithm with real code is used to optimize the 
position of elastic supports to maximize the 
fundamental frequency of structures. 
 
 
2 The outline of generalized genetic 

algorithm  
 
 
2.1 creating seeds using population isolation 
The whole parametric space is divided as several 
subdomains,each seed is created independently and 
synchronistically in every subdomain. Population 
isolation can ensure  that the algorithm converges 
speedy to the global optimal solution and avoids the 
early mature. 
 
2.2 Selection operator 
The method of 2/4 alternative optimum is used, in 
which the parent generation is permitted to compete 
with child generation in crossover and mutation and 
the fine individuals of parent generation step into the 
next generation.Using this method can endure that 
the algorithm is stabe and has the capability to 
realize local optimum. 
 
2.3 Crossover operator 
In the paper the arithmetic crossover operator is 
used. Suppose and  are two individuals that 

will cross in the 
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where 1τ and 2τ are random numbers distributed 
uniformly in [-1,1]. 
arithmetic crossover operator can ensure that the 
searching space covers the whole neighborhood of 

and  , and  and  are between 

and  with large probability. 
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2.4 Mutation operator 
The nonuniform and random mutation is used in the 
paper.The child generation after mutation can be 
expressed as follows 

bxx t
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（2） 
whereare 3τ is a random number distributed 
uniformly in [-1,1], is the radius of mutation 
operator. 

b

This mutation operator can ensure that  is 

obtained in the neighborhood 
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Radius  is a variable with the number of cycles 
,expressed as follows 
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where  is the current number of cycles，  is the 
maximal value of mutation.The radius of mutation is 
gradually minished. 

c sb

 
 
3   Main steps of the generalized 

genetical algorithm 
The main steps of  the generalized genetic algorithm 
employing above are as follows 
(1)Initialize all variables in the algorithm. 
(2)Initialize a population using population isolation. 
(3)Evaluate the fitness value of each individual in 
the population. If stopping criterion is met,the cycle 
is exited,otherwise go to next step. 
(4)Select a half individuals of the population to 
apply crossover. 
(5)Selecting a half individuals from the child 
generation created by crossover and parent 
generation which was applied crossover according 
to selection operator combines the other half 
individuals of the parent generation  which are not 
applied crossover to form a middle population. 
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(6)Select randomly a half individuals of the middle 
population to apply mutation 
(7)Selecting a half individuals from the child 
generation created by mutation and parent 
generation  which was applied mutation according to 
selection operator combines the other half 
individuals of the middle population  which are not 
applied mutation to form a new population. 
(8)return step (3). 
 
 
4   Examples 
A uniform cantilever beam of length L = 10m, with 
a lumped mass attachment m = 500 kg at its mid-
point, is shown in Figure 2. The beam, discretized 
with 20 regular beam elements, is required to 
maximize its first frequency by introducing an 
additional support. The cross-section of the beam is 
a square with its side of H = 0.2m. Young’ s 

modulus is E = 210 GPa and material density isρ = 
7800 kg/m3.This cantilever beam is the same as that 
in the paper [8] in which only the longitudinal 
stiffness of elastic support was taken into 
account,but in the paper the bending stiffness of 
elastic support will be taken into account. To 
execute the optimization procedure, the FE method 
is utilized as an analyser to calculate the natural 
frequency and associated vibration mode.The first 
natural frequency of the cantilever beam without an 
additional support is f1=1.6164Hz，the second 
natural frequency f2＝9.1686Hz.We will introduce 
the optimizing process considering two cases due to 
different supports. 

 
 

Fig.2 Finite element model of 
uniform cantilever beam 

 
 
4.1 Elastic support without bending stiffness 
As shown in Fig.1, Suppose the elastic support has 
no bending stiffness and its longitudinal stiffness is 

.Real code is used in the 
generalized genetic algorithm. 

mNk /108.2 6×=

As shown in Fig.2, The position of the support is 
located by its x-coordinate that the zero is at the 
cantilevered end of the beam.,so the x-coordinate of 
the support is the design variable. We Use 
population isolation to select four seeds as 
1.772m、2.833m、6.239m and 
8.660m，calculating the corresponding fundamental 
frequencies and substituting them into the program 
of the generalized genetic algorithm. After four 
cycles,the optimal position of the support is obtained 
as mlopt 244.8= ,and the maximal fundamental 

frequeny is Hzpopt 6292.6= .Fig.3 shows the 
process of the optimization. 
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Fig.3 Support position/fundamental frequency curve 
 
From Fig.3 it can be seen that the calculating points 
in the area that is far from the optimum  value  are 
sparse,but ones in the neighborhood of the optimum  
value  are very dense, which shows the characteristic 
that the generalized genetic algorithm can rapidly 
reach  the neighborhood of the optimum  value and 
carry through local seeking. 
Fig.4 and Fig.5 show the optimal results for another 
stiffness when there are eleven different stiffness 
between . mNandmN /104.8/108.2 66 ××
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Fig.4 Support rigidity/optimum 

support position curve 
 

It can be seen from Fig.4 and Fig.5 that the optimum 
position of support and the fundamental frequency 
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depend on the stiffness of elastic support without 
bending stiffness,the fundamental frequency 
approaches to the second natural frequency 
f2＝9.1686Hz of the cantilever beam without the 
additional support and the optimum position of 
support approaches to the node point of the second 
mode of the original structure. When the stiffness is 
large enough (over critical stiffness nearly 7×106 
N/m), the optimal position is at the node point 
exactly,and the fundamental frequency reaches its 
maximal limit f2＝9.1686Hz,even though the 
support become rigid. These results are same as that 
in the paper [8]. 
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Fig.5 Support rigidity/optimum fundamental 

frequency curve 
 
4.2 Elastic support with bending stiffness 
It must be clear in engineering that a support has or 
has not bending stiffness,which will affect the 
performances of structures.However the genetic 
algorithm is the same for the support with or without 
bending stiffness,which shows the adaptability of 
genetic algorithm.In this example the longitudinal 
stiffness of the elastic support is the same as first 
example but there is a bending spring,the bending 
stiffness is .As the same 
in the first example,the longitudinal stiffness is 
divided uniformly eleven points between 

,optimizing 
the positin of support to maximize the fundamental 
frequency. 

radmNk /108.2 6 ⋅×=θ

mNandmN /104.8/108.2 66 ××
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Fig.6 Support rigidity/optimum support position 

curve 
 

Fig.6 and Fig.7 show the optimal position and 
fundamental frequency vary with the longitudinal 
stiffness of support which has a bending stiffness 

. radmNk /108.2 6 ⋅×=θ

It can be seen from Fig.6 and Fig.7 that the optimal 
position of support moves toward the cantilever end 
and the fundamental frequency becomes larger  and 
exceeds the second natural frequency of the original 
structure with the increase of longitudinal stiffness. 
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Fig.7 Support rigidity/optimum fundamental 
frequency curve 

 
Changing the bending stiffness,another optimal 
results can be obtained.For small longitudinal 
stiffness the optimal position is at the point between 
the node point of second mode of the original 
structure and the free end, increasing the bending 
stiffness will make the fundamental frequency 
increased but less than the second natural frequency 
of the original structure and the optimal position 
moves toward the node point..When the longitudinal 
stiffness is larger than the critical stiffness, the 
fundamental frequency will exceed the second 
natural frequency of the origianal structure,the 
optimal position will pass through the node point of 
the second mode of the original structure and moves 
toward the cantilever end slowly with the increasing 
of bending stiffness.When the longitudinal stiffness 
is equal to the critical stiffness,the optimal position 
is at the node point of second mode of the original 
structure and the bending stiffness will not affect the  
optimal results. 
 
 
5   Conclusion 
In this paper we find the optimization of position of 
a elastic support with bending stiffness is difficult to 
use the mathematical optimal method through the 
sensitivities.The generalized genetic algorithm was 
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presented to solve the optimization of position of a 
elastic support with bending stiffness. The validity 
of the method was proved  by the examples.Future  
work will extend the approach to the case there are  
more supports. 
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