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Abstract: In this paper we present a new method to construct iteratively new bent functiens @fvariables
from a bent functions of variables. We generate bent functions using the concept of minterm for Boolean
functions.
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1 Introduction function if it takes the form

Boolean functions, components of S-boxes, are used n

in different types of cryptographic applications such flxy,xe, ... xy) = @am D0,
as in block ciphers, stream ciphers and hash functions i=1

[3, 4, 8], and coding theory [2, 5, 6]. A variety of cri-
teria for choosing Boolean functions determine their
ability to provide security and its importance to be
used in different applications. A high value of the
nonlinearity ensure that the best affine approximation
attack will fail [7, 10]. Boolean function achieving
the maximum nonlinearity are called bent functions
[11, 13]. In this paper we present a method to con-
struct bent functions for any value ef Bent func-
tions with 4 variables have been very studied, and
therefore we know the number of bent functions that
there are. However a general method to generate aI‘
the bent functions in variables is unknown fot > 6
(see for example [1, 9, 11, 12]). All the bent functions
are only known fom = 4; so, we use this fact and the
concept of minterm to construct iteratively bent func- NL (f) = min{d (f,¢) | ¢ € An}
tions forn > 6.

wherea;,b € Bfori =1,2,...,n. We denote by4,,
the set of all affine functions; & = 0, we said thatf
is alinear function.

TheHamming weightof a (0, 1)-sequencey, de-
noted byw (), is the number ofl in a. A (0, 1)-
sequence ibalancedif it contains an equal number of
0 and1. A Boolean functionf is balancedif its truth
table is balanced. ThEamming distance between
two (0, 1)-sequencea andg, denoted byl («, 3), is
the number of positions where the two sequences dif-
er, that isd (a, 3) = w (a @ 3). For two Boolean
unctions f andg we have thatv (f) = w ({f) and

Thenonlinearity N L of a Boolean functiory is

and it is well known (see [13]) that

2 Preliminaries NL(f) <27 ' —2:271
Let B = {0, 1}, aBoolean functionof n variables is .
afunctionf : B* — B. Fori =0,1,...,2"—1, let
3, be the vector ilB™ whose integer representation is
i. Obviously, B” = {3,}*';'. Fora andg in B",
let o & 3 be the component-wise binary addition
For a Boolean functiotf, the (0, 1)-sequence

The Boolean functions that attains the maximum non-
linearity are callecbent functions (see [13]), in this
case,n must be even. It follows then thgt(x) is a
bent function if and onlyl & f(x) is a bent function.

A minterm on n variablesx{,zs,...,x, iS a
Boolean function

& = (f(Bo), f(Br), ..., f(Ban_1)) Meyegen (15 L2y ooy Ty) = T{ TS+ 290
where
is called thetruth table of f. P ife=1,
We say that a Boolean functiofi is an affine )iz, ife=o0.
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We write m;(x) instead ofmg (x), and therefore
m;(x) = 1ifonly if = B,. So, the truth table
of m;(x) has al in theith position and) elsewhere.
Consequently,

It is well known that any Boolean functiofi can
be expressed as

=P mi(x)

i€l

for a subsef of {1,2,...,n}.

According with the above commentg,is a bent
function if and only if f () ® f(a @ ) is a balanced
function [13]; in additiong(x) = f(x ® «) is also a
bent function. In addition iff is a bent function, then
it has exactly2”~! + 25! minterms; so thaf is not
balanced.

3 Main results
In the following, we consider thatig,1i,2,13)
and (jo, j1,J2,j3) are permutations of0,1,2,3).
Also, letx = (z1,29,...,2,) andy = (y1,¥2)
(ig, i1, 2, 13).

The following two technical lemmas, whose
proofs can be obtain directly from the definition of
minterm, are the keys to proof our main result.

Lemma 1. For each minterm im variables, it is pos-
sible to constructt different minterms im + 2 vari-
ables.

Lemma 2: mq(B® x) = magg(x) for o, 3 € B™.

Next theorem, which is the main result of this pa-
per, allow us to construct a new bent functiomof 2
variables starting with a bent function efvariables.

Theorem 1: Let f(x) be a bent function with vari-
ables. Assume that for nonzexou € B™ the equal-

ity
f@)ofAez)df(pdx)d f(Abpdz) =1 (1)

holds. Then

H(y,x) = mi,(y) f(x) ® mi, (y) f(A S x)
® mi, (y) (1 & )
©m(y) (f(x) o fAoz) @ f(pox))

is a bent function witlw + 2 variables.

20

PROOF. For all nonzerd3, a) € B? x B™ we need
to prove that the function

Hga)(y, ) =

is balanced.
Firstly, observe that from lemma 2

H(y,z)® H((B,a) ® (y,x))

Hga)(y,x)

= miy (y) f(x) & mi, (y) f(A & x)
@ my, (W f(nex)
O miy(y) (f(@) & fA@ @) & f(n @)
& miyep(Y)f(
S miep(y)f(a®A® )
S miep(y)f(a®p o)
O Mizep(y) (fla®z)® flad Ao )

Sfladpdx)).

adx)

We considerer different cases depending on

(8, ).

e Assume thatx = 0,, and3 # 0,. Then, we
have that

Hp.(y )
= (mlo( )@ mlo@,@( )) f w)
@ (mi, (y) © miyep(y
@ (miy (y) © mirep(y

© (Mg (y) ® mizep(y
DfAox)d f(p

(A
(p
()
dx)).

(
) f(A @ )
Nflnox
) (f

— If 8 = 1, then, after some tedious alge-
braic manipulations, we obtain

Hpa(y,x) = (@) © fA D)

and consequently, €, is the truth table
of f(x) ® f(X @ x), then the truth table
of H(g ) (y, x) has4 blocs,

Ex & & &
which is balanced, becausg, is bal-
anced.
— If 3 =2, then

Hpo(y,x) = f(x) @ f(n© )

which is analogous to the previous case.
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—1f B =3,

Hpgeo(y, @) = fAd )& f(pa ).

which also is analogous to the first case,

because

fAsez)af(poz) = f(2)0f(pdAdz2)
forz =A@ xand\ # p.

e Assume thatx # 0,, and3 = 0.
have that

Then, we

(fAAoz)d fladAdx))
(flroz) s fladpo))
(flx)® fAD @)D f(p® )
) fladArdx)

(
©mi, (y) (fAdz)® fladAdx))
©mi,(y) (f(hOx)d fladpdx))
©miy(y) (fASpox)

SfladAdpdx))

where the last equality follows from expression
(1). Now, taking into account that the following
functions

flx adx),

)& f(
fAex)d fladAdAdx),
fluez)® flaopsx),
fAopoz)d fadAdpdx)

are balanced, we obtain thaf g o (y,x) is
balanced.

e Assume thatx # 0,, and3 # 05. Then, from
expression (1), we have that

Hg,0)(y; @)
= miy (y) f(z) & mi, (y) f(A S x)
@ mi,(y) f(n @ x)
©miy(y) (1O f(AD pdx))

== ==
Q
¥
>
¥
&
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For3 =1, then

Higa)(y
=mi,(y) (f(z) © fla© Ao x))
Omy, (y) (fADz)® fladx))
©mi,(y) (flnoz) D1
OflaBADpdT))
(
ef(

, )

@ng,(y) lofAopdx)
adpudx))

— Fora = A\, we have that

Hg,o)(y, ) = mi,(y) © miy (y)
which is balanced.
— Fora = u, we have that

H o)y, )
=miy(y) (f(x) ® fla® A& x))
©mi, (y) (fAez)® fla®x))
Omi,(y) (fladx)®1d f(ADx))
Omi,(Y) (1D fAdadx)d f(x))

which is balanced because # A\ and
each one of the following functions

f(x) @ fla® A z),
fAez) o flad ),
fladx)dld f(Ax),
lafAeadx)d f(x)
is balanced.

— Finally, for« # X anda # u, we
have thatH g )(y, ) is balanced be-
cause each one of the functions

fl@)® flad A ),
fAoz)e flas ),
fluesz)elae fasrAeoud ),
1o fAeopdz)® flad pudx)
is balanced.

For 3 = 2 and3 = 3 the same argument fol-
lows. |

For a given bent functiory(x) and a fixedA
our examples show that the values ofthat satisfy
equation (1) are those that correspond to indices of
minterms that are not ifi(x) @ f(x & X). Since this
function is balanced, we ha®~! possibles values
for u. Consequently, we claim that we can construct
(2™ — 1)2"~! new bent functions according with the
above theorem. Nevertheless, we cannot prove this
claim.
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4 Conclusion

We have presented one method to obtain new bent

functions ofn + 2 variables from bent functions of
n variables. This method is based in the expression
of Boolean functions as sum of minterms. We have

[6]

proved some properties of the minterms. We claim [7]

that the number of new bent functionsfi- 2 vari-

ables that we can construct with this method starting

with a bent function of. variables is(2" — 1)271,
In fact, tacking into account thdt® F' is bent if F'

is bent, then the number of new bent functions will be [8] W. Meier and O. Staffelbach.

2"(2™ — 1). The results of this paper are valuable in
both theory and practical applications.
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