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Abstract: In this paper we present a new method to construct iteratively new bent functions ofn + 2 variables
from a bent functions ofn variables. We generate bent functions using the concept of minterm for Boolean
functions.
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1 Introduction
Boolean functions, components of S-boxes, are used
in different types of cryptographic applications such
as in block ciphers, stream ciphers and hash functions
[3, 4, 8], and coding theory [2, 5, 6]. A variety of cri-
teria for choosing Boolean functions determine their
ability to provide security and its importance to be
used in different applications. A high value of the
nonlinearity ensure that the best affine approximation
attack will fail [7, 10]. Boolean function achieving
the maximum nonlinearity are called bent functions
[11, 13]. In this paper we present a method to con-
struct bent functions for any value ofn. Bent func-
tions with 4 variables have been very studied, and
therefore we know the number of bent functions that
there are. However a general method to generate all
the bent functions inn variables is unknown forn ≥ 6
(see for example [1, 9, 11, 12]). All the bent functions
are only known forn = 4; so, we use this fact and the
concept of minterm to construct iteratively bent func-
tions forn ≥ 6.

2 Preliminaries
Let B = {0, 1}, aBoolean functionof n variables is
a functionf : Bn −→ B. Fori = 0, 1, . . . , 2n−1, let
βi be the vector inBn whose integer representation is
i. Obviously,Bn = {βi}2n−1

i=0 . For α andβ in Bn,
let α ⊕ β be the component-wise binary addition⊕.
For a Boolean functionf , the(0, 1)-sequence

ξf = (f(β0), f(β1), . . . , f(β2n−1))

is called thetruth table of f .

We say that a Boolean functionf is an affine

function if it takes the form

f(x1, x2, . . . , xn) =
n⊕

i=1

aixi ⊕ b,

whereai, b ∈ B for i = 1, 2, . . . , n. We denote byAn

the set of all affine functions; ifb = 0, we said thatf
is a linear function.

TheHamming weight of a(0, 1)-sequenceα, de-
noted byw (α), is the number of1 in α. A (0, 1)-
sequence isbalancedif it contains an equal number of
0 and1. A Boolean functionf is balancedif its truth
table is balanced. TheHamming distancebetween
two (0, 1)-sequencesα andβ, denoted byd (α,β), is
the number of positions where the two sequences dif-
fer, that isd (α,β) = w (α⊕ β). For two Boolean
functionsf andg we have thatw (f) = w (ξf ) and
d (f, g) = d (ξf , ξg).

Thenonlinearity NL of a Boolean functionf is

NL (f) = min{d (f, ϕ) | ϕ ∈ An}

and it is well known (see [13]) that

NL (f) ≤ 2n−1 − 2
n
2
−1.

The Boolean functions that attains the maximum non-
linearity are calledbent functions (see [13]), in this
case,n must be even. It follows then thatf(x) is a
bent function if and only1⊕ f(x) is a bent function.

A minterm on n variablesx1, x2, . . . , xn is a
Boolean function

me1e2···en(x1, x2, . . . , xn) = xe1
1 xe2

2 · · ·xen
n

where

xe =

{
x, if e = 1,

1⊕ x, if e = 0.
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We write mi(x) instead ofmβi
(x), and therefore

mi(x) = 1 if only if x = βi. So, the truth table
of mi(x) has a1 in the ith position and0 elsewhere.
Consequently,

2n−1⊕
i=0

mi(x) = 1.

It is well known that any Boolean functionf can
be expressed as

f(x) =
⊕
i∈I

mi(x)

for a subsetI of {1, 2, . . . , n}.
According with the above comments,f is a bent

function if and only iff(x)⊕ f(α⊕x) is a balanced
function [13]; in addition,g(x) = f(x⊕α) is also a
bent function. In addition iff is a bent function, then
it has exactly2n−1 ± 2

n
2
−1 minterms; so thatf is not

balanced.

3 Main results
In the following, we consider that(i0, i1, i2, i3)
and (j0, j1, j2, j3) are permutations of(0, 1, 2, 3).
Also, let x = (x1, x2, . . . , xn) and y = (y1, y2)
(i0, i1, i2, i3).

The following two technical lemmas, whose
proofs can be obtain directly from the definition of
minterm, are the keys to proof our main result.

Lemma 1: For each minterm inn variables, it is pos-
sible to construct4 different minterms inn + 2 vari-
ables.

Lemma 2: mα(β⊕x) = mα⊕β(x) for α,β ∈ Bn.

Next theorem, which is the main result of this pa-
per, allow us to construct a new bent function ofn+2
variables starting with a bent function ofn variables.

Theorem 1: Letf(x) be a bent function withn vari-
ables. Assume that for nonzeroλ,µ ∈ Bn the equal-
ity

f(x)⊕f(λ⊕x)⊕f(µ⊕x)⊕f(λ⊕µ⊕x) = 1 (1)

holds. Then

H(y,x) = mi0(y)f(x)⊕mi1(y)f(λ⊕ x)
⊕mi2(y)f(µ⊕ x)
⊕mi3(y) (f(x)⊕ f(λ⊕ x)⊕ f(µ⊕ x))

is a bent function withn + 2 variables.

PROOF: For all nonzero(β,α) ∈ B2 × Bn we need
to prove that the function

H(β,α)(y,x) = H(y,x)⊕H((β,α)⊕ (y,x))

is balanced.
Firstly, observe that from lemma 2

H(β,α)(y,x)

= mi0(y)f(x)⊕mi1(y)f(λ⊕ x)
⊕mi2(y)f(µ⊕ x)
⊕mi3(y) (f(x)⊕ f(λ⊕ x)⊕ f(µ⊕ x))
⊕mi0⊕β(y)f(α⊕ x)
⊕mi1⊕β(y)f(α⊕ λ⊕ x)
⊕mi2⊕β(y)f(α⊕ µ⊕ x)
⊕mi3⊕β(y) (f(α⊕ x)⊕ f(α⊕ λ⊕ x)

⊕f(α⊕ µ⊕ x)) .

We considerer different cases depending on
(β,α).

• Assume thatα = 0n andβ 6= 02. Then, we
have that

H(β,α)(y,x)

= (mi0(y)⊕mi0⊕β(y)) f(x)
⊕ (mi1(y)⊕mi1⊕β(y)) f(λ⊕ x)
⊕ (mi2(y)⊕mi2⊕β(y)) f(µ⊕ x)
⊕ (mi3(y)⊕mi3⊕β(y)) (f(x)

⊕ f(λ⊕ x)⊕ f(µ⊕ x)) .

– If β = 1, then, after some tedious alge-
braic manipulations, we obtain

H(β,α)(y,x) = f(x)⊕ f(λ⊕ x)

and consequently, ifξλ is the truth table
of f(x) ⊕ f(λ ⊕ x), then the truth table
of H(β,α)(y,x) has4 blocs,

ξλ ξλ ξλ ξλ

which is balanced, becauseξλ is bal-
anced.

– If β = 2, then

H(β,α)(y,x) = f(x)⊕ f(µ⊕ x)

which is analogous to the previous case.
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– If β = 3,

H(β,α)(y,x) = f(λ⊕ x)⊕ f(µ⊕ x).

which also is analogous to the first case,
because

f(λ⊕x)⊕f(µ⊕x) = f(z)⊕f(µ⊕λ⊕z)

for z = λ⊕ x andλ 6= µ.

• Assume thatα 6= 0n andβ = 02. Then, we
have that

H(β,α)(y,x)

= mi0(y) (f(x)⊕ f(α⊕ x))
⊕mi1(y) (f(λ⊕ x)⊕ f(α⊕ λ⊕ x))
⊕mi2(y) (f(µ⊕ x)⊕ f(α⊕ µ⊕ x))
⊕mi3(y) (f(x)⊕ f(λ⊕ x)⊕ f(µ⊕ x)

⊕ f(α⊕ x)⊕ f(α⊕ λ⊕ x)
⊕ f(α⊕ µ⊕ x))

= mi0(y) (f(x)⊕ f(α⊕ x))
⊕mi1(y) (f(λ⊕ x)⊕ f(α⊕ λ⊕ x))
⊕mi2(y) (f(µ⊕ x)⊕ f(α⊕ µ⊕ x))
⊕mi3(y) (f(λ⊕ µ⊕ x)

⊕f(α⊕ λ⊕ µ⊕ x))

where the last equality follows from expression
(1). Now, taking into account that the following
functions

f(x)⊕ f(α⊕ x),

f(λ⊕ x)⊕ f(α⊕ λ⊕ x),

f(µ⊕ x)⊕ f(α⊕ µ⊕ x),

f(λ⊕ µ⊕ x)⊕ f(α⊕ λ⊕ µ⊕ x)

are balanced, we obtain thatH(β,α)(y,x) is
balanced.

• Assume thatα 6= 0n andβ 6= 02. Then, from
expression (1), we have that

H(β,α)(y,x)

= mi0(y)f(x)⊕mi1(y)f(λ⊕ x)
⊕mi2(y)f(µ⊕ x)
⊕mi3(y) (1⊕ f(λ⊕ µ⊕ x))
⊕mi0⊕β(y)f(α⊕ x)
⊕mi1⊕β(y)f(α⊕ λ⊕ x)
⊕mi2⊕β(y)f(α⊕ µ⊕ x)
⊕mi3⊕β(y) (1⊕ f(α⊕ λ⊕ µ⊕ x))

Forβ = 1, then

H(β,α)(y,x)

= mi0(y) (f(x)⊕ f(α⊕ λ⊕ x))
⊕mi1(y) (f(λ⊕ x)⊕ f(α⊕ x))
⊕mi2(y) (f(µ⊕ x)⊕ 1

⊕f(α⊕ λ⊕ µ⊕ x))
⊕mi3(y) (1⊕ f(λ⊕ µ⊕ x)

⊕f(α⊕ µ⊕ x))

– Forα = λ, we have that

H(β,α)(y,x) = mi2(y)⊕mi3(y)

which is balanced.
– Forα = µ, we have that

H(β,α)(y,x)

= mi0(y) (f(x)⊕ f(α⊕ λ⊕ x))
⊕mi1(y) (f(λ⊕ x)⊕ f(α⊕ x))
⊕mi2(y) (f(α⊕ x)⊕ 1⊕ f(λ⊕ x))
⊕mi3(y) (1⊕ f(λ⊕α⊕ x)⊕ f(x))

which is balanced becauseα 6= λ and
each one of the following functions

f(x)⊕ f(α⊕ λ⊕ x),

f(λ⊕ x)⊕ f(α⊕ x),

f(α⊕ x)⊕ 1⊕ f(λ⊕ x),

1⊕ f(λ⊕α⊕ x)⊕ f(x)

is balanced.
– Finally, for α 6= λ and α 6= µ, we

have thatH(β,α)(y,x) is balanced be-
cause each one of the functions

f(x)⊕ f(α⊕ λ⊕ x),

f(λ⊕ x)⊕ f(α⊕ x),

f(µ⊕ x)⊕ 1⊕ f(α⊕ λ⊕ µ⊕ x),

1⊕ f(λ⊕ µ⊕ x)⊕ f(α⊕ µ⊕ x)

is balanced.

For β = 2 andβ = 3 the same argument fol-
lows. �

For a given bent functionf(x) and a fixedλ
our examples show that the values ofµ that satisfy
equation (1) are those that correspond to indices of
minterms that are not inf(x)⊕ f(x⊕ λ). Since this
function is balanced, we have2n−1 possibles values
for µ. Consequently, we claim that we can construct
(2n − 1)2n−1 new bent functions according with the
above theorem. Nevertheless, we cannot prove this
claim.
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4 Conclusion
We have presented one method to obtain new bent
functions ofn + 2 variables from bent functions of
n variables. This method is based in the expression
of Boolean functions as sum of minterms. We have
proved some properties of the minterms. We claim
that the number of new bent functions ofn + 2 vari-
ables that we can construct with this method starting
with a bent function ofn variables is(2n − 1)2n−1.
In fact, tacking into account that1 ⊕ F is bent if F
is bent, then the number of new bent functions will be
2n(2n − 1). The results of this paper are valuable in
both theory and practical applications.
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