On the Iterative Construction of Bent Functions ${ }^{1}$

JOAN-JOSEP CLIMENT ${ }^{(\mathrm{a})}$, FRANCISCO J. GARCÍA ${ }^{(\mathrm{b})}$, VERÓNICA REQUENA ${ }^{(\mathrm{a})}$
${ }^{(a)}$ Departament de Ciència de la Computació i Intel-ligència Artificial
${ }^{\text {(b) }}$ Departament de Fonaments de l'Anàlisi Econòmica
Universitat d'Alacant
Ap. 99 E-03080 Alacant
SPAIN

Abstract: In this paper we present two methods to construct iteratively bent functions of $n+2$ variables from bent functions of n variables. Our methods use bent functions expressed as sum of minterms.

Key-words: Boolean function, cryptography, nonlinearity, bent function, minterm, balanced sequence.

1 Introduction

Boolean functions are used for a wide variety of applications in engineering and computer science. They have been the subject of cryptography $[4,5,11]$, coding theory $[3,7,9]$, and digital communications [$6,8,13]$, among others. The most important Boolean functions are bent functions since they are a very important tool in different kinds of cryptographic applications, like stream ciphers and block ciphers. That is why we need to find Boolean functions with a variety of criteria that reduce the effectiveness of advanced cryptanalytic attack, such as linear [10] and differential [2,12]. Bent functions are the Boolean functions achieving the upper bound on nonlinearity, so that they offer the maximum possible resistance to these attacks [15]. Bent functions with 4 variables have been very studied, and therefore we know the number of bent functions that there are. However a general method to generate all the bent functions in n variables is unknown for $n \geq 6$ (see for example $[1,14,16,17])$. So that, we want to contribute to the knowledge of that functions with the introduction of two methods to construct bent functions for any value of n. These methods are based on minterms.

2 Preliminaries

Let n be a positive integer and $B=\{0,1\}$. A function $f: B^{n} \longrightarrow B$ is called a Boolean function of n variables. For $i=0,1, \ldots, 2^{n}-1$, let $\boldsymbol{\beta}_{i}$ be the vector in B^{n} whose integer representation is i. For a Boolean function f, the $(0,1)$-sequence

$$
\xi_{f}=\left(f\left(\boldsymbol{\beta}_{\mathbf{0}}\right), f\left(\boldsymbol{\beta}_{\mathbf{1}}\right), \ldots, f\left(\boldsymbol{\beta}_{\mathbf{2}^{n}-\mathbf{1}}\right)\right)
$$

is called the truth table of f.
We say that a Boolean function f is an affine
function if it takes the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\bigoplus_{i=1}^{n} a_{i} x_{i} \oplus b
$$

where $a_{i}, b \in B$ for $i=1,2, \ldots, n$ and \oplus is the binary addition. In addition, f is called a linear function if $b=0$.

The Hamming weight of $\mathrm{a}(0,1)$-sequence $\boldsymbol{\alpha}$, denoted by w $(\boldsymbol{\alpha})$, is the number of 1 s in $\boldsymbol{\alpha}$. A $(0,1)$ sequence is balanced if it contains an equal number of 0 s and 1 s ; a Boolean function f is balanced if its truth table is balanced. The Hamming distance between two $(0,1)$-sequences $\boldsymbol{\alpha}$ and $\boldsymbol{\beta}$, denoted by $\mathrm{d}(\boldsymbol{\alpha}, \boldsymbol{\beta})$, is the number of positions where the two sequences differ, that is $\mathrm{d}(\boldsymbol{\alpha}, \boldsymbol{\beta})=\mathrm{w}(\boldsymbol{\alpha} \oplus \boldsymbol{\beta})$. For two Boolean functions f and g we have that $\mathrm{w}(f)=\mathrm{w}\left(\xi_{f}\right)$ and $\mathrm{d}(f, g)=\mathrm{d}\left(\xi_{f}, \xi_{g}\right)$.

The nonlinearity $N L$ of a Boolean function f is given by

$$
\operatorname{NL}(f)=\min \left\{\mathrm{d}(f, \varphi) \mid \varphi \in \mathcal{A}_{n}\right\}
$$

where \mathcal{A}_{n} is the set of all affine functions; it is well known (see [18]) that

$$
\mathrm{NL}(f) \leq 2^{n-1}-2_{2}^{n-1} .
$$

The Boolean functions that attains the maximum nonlinearity are called bent functions (see [18]), in this case, n must be even. It follows then that $f(\boldsymbol{x})$ is a bent function if and only $1 \oplus f(\boldsymbol{x})$ is a bent function.

A minterm on n variables $x_{1}, x_{2}, \ldots, x_{n}$ is a Boolean function

$$
m_{e_{1} e_{2} \cdots e_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{1}^{e_{1}} x_{2}^{e_{2}} \cdots x_{n}^{e_{n}}
$$

where

$$
x^{e}= \begin{cases}x, & \text { if } e=1 \\ 1 \oplus x, & \text { if } e=0\end{cases}
$$

[^0]We write $m_{i}(\boldsymbol{x})$ instead of $m_{\boldsymbol{\beta}_{i}}(\boldsymbol{x})$, and therefore $m_{i}(\boldsymbol{x})=1$ if only if $\boldsymbol{x}=\boldsymbol{\beta}_{i}$. So, the truth table of $m_{i}(\boldsymbol{x})$ has a 1 in the i th position and 0 elsewhere. Consequently,

$$
\begin{equation*}
\bigoplus_{i=0}^{2^{n}-1} m_{i}(\boldsymbol{x})=1 \tag{1}
\end{equation*}
$$

It is well known that any Boolean function f can be expressed as

$$
f(\boldsymbol{x})=\bigoplus_{i \in I} m_{i}(\boldsymbol{x})
$$

for a subset I of $\{1,2, \ldots, n\}$.
According with the above comments, f is a bent function if and only if $f(\boldsymbol{x}) \oplus f(\boldsymbol{\alpha} \oplus \boldsymbol{x})$ is a balanced function [18]; in addition, $g_{\alpha}(\boldsymbol{x})=f(\boldsymbol{x} \oplus \boldsymbol{\alpha})$ is also a bent function. In addition if f is a bent function, then it has exactly $2^{n-1} \pm 2^{\frac{n}{2}-1}$ minterms; so that f is not balanced.

3 Main results

We consider that $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $\boldsymbol{y}=$ $\left(y_{1}, y_{2}\right)$, also $\left(i_{0}, i_{1}, i_{2}, i_{3}\right)$ and $\left(j_{0}, j_{1}, j_{2}, j_{3}\right)$ will be permutations of $(0,1,2,3)$.

The two following two lemmas, whose proofs can be obtained directly from the definition of minterm, are the key of our main results.

Lemma 1: For each minterm in n variables, it is possible to construct 4 different minterms in $n+2$ variables.

Minterms have the following property that make them operative from the algebraic point of view.

Lemma 2: $m_{\boldsymbol{\alpha}}(\boldsymbol{\beta} \oplus \boldsymbol{x})=m_{\boldsymbol{\alpha} \oplus \boldsymbol{\beta}}(\boldsymbol{x})$ for $\boldsymbol{\alpha}, \boldsymbol{\beta} \in B^{n}$.
In the following two theorems, that are the main results of this paper, we introduce two methods to construct bent functions.

Theorem 1: If $f(\boldsymbol{x})$ is a bent function with n variables, then
$F(\boldsymbol{y}, \boldsymbol{x})=\left(\bigoplus_{t=0}^{2} m_{i_{t}}(y)\right) f(\boldsymbol{x}) \oplus m_{i_{3}}(\boldsymbol{y})(1 \oplus f(\boldsymbol{x}))$
is a bent function with $n+2$ variables.
Proof: We need to prove that

$$
F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})=F(\boldsymbol{y}, \boldsymbol{x}) \oplus F((\boldsymbol{\beta}, \boldsymbol{\alpha}) \oplus(\boldsymbol{y}, \boldsymbol{x}))
$$

is balanced for all nonzero $(\boldsymbol{\beta}, \boldsymbol{\alpha}) \in B^{2} \times B^{n}$
Now, by Lemma 2, by expression (1), and after some tedious algebraic manipulations, it follows then that

$$
\begin{align*}
F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})=f & (\boldsymbol{x}) \oplus f(\boldsymbol{x} \oplus \boldsymbol{\alpha}) \\
& \oplus m_{i_{3}}(\boldsymbol{y}) \oplus m_{i_{3} \oplus \boldsymbol{\beta}}(\boldsymbol{y}) \tag{2}
\end{align*}
$$

So, if $\mathbf{0}$ and $\mathbf{1}$ are the $2^{n} \times 1$ arrays with all entries equal to 0 and 1 respectively, $\boldsymbol{\tau}$ is the $2^{n} \times n$ array whose i th row is $\boldsymbol{\beta}_{i}$, and $\boldsymbol{\xi}_{\boldsymbol{\alpha}}$ is the truth table of $f(\boldsymbol{x}) \oplus f(\boldsymbol{\alpha} \oplus \boldsymbol{x})$, then, according with expression (2), Table 1 show the truth table of $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ for $i_{3}=3$ and $\boldsymbol{\beta}=2$.

To obtain the last column of the truth table for the different values of i_{3} and $\boldsymbol{\beta}$ is not difficult.

We consider the following cases:

- $\boldsymbol{\beta} \neq \mathbf{0}_{2}$ and $\boldsymbol{\alpha} \neq \mathbf{0}_{n}$. In this case, the truth table of $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ has, according with the above comments, four blocs

$$
\xi_{\alpha} \quad \xi_{\alpha} \quad \xi_{\alpha} \oplus 1 \quad \xi_{\alpha} \oplus 1
$$

not necessarily in that order. The exact position of each bloc depends on the values of i_{3} and $\boldsymbol{\beta}$. Now, taking into account that the number of 1 s (and also the number of 0 s) in $\boldsymbol{\xi}_{\alpha}$ is 2^{n-1}, we can ensure that the number of 1 s in the truth table of $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ is $4 \cdot 2^{n-1}=2^{n+1}$ and, consequently, $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ is balanced.

- $\boldsymbol{\beta}=\mathbf{0}_{2}$ and $\boldsymbol{\alpha} \neq \mathbf{0}_{n}$. In this case, the truth table of $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ has, four blocs

$$
\xi_{\alpha} \quad \xi_{\alpha} \quad \xi_{\alpha} \quad \xi_{\alpha}
$$

which correspond to a balanced sequence.

- $\boldsymbol{\beta} \neq \mathbf{0}_{2}$ and $\boldsymbol{\alpha}=\mathbf{0}_{n}$. In this case, $\boldsymbol{\xi}_{\boldsymbol{\alpha}}=\boldsymbol{\xi}_{\mathbf{0}}=$ $\mathbf{0}$, and the truth table of $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ has four blocs

$$
\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}
$$

not necessarily in that order. So, it is balanced.
Consequently, $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ is balanced and, therefore, $F(\boldsymbol{y}, \boldsymbol{x})$ is a bent function.

For a given bent function $f(\boldsymbol{x})$ in n variables, we can construct, according with Theorem $1,4!/ 3!=4$ different bent functions in $n+2$ variables.

Now, in a similar way as in the previous theorem, we have the following result.

y_{1}	y_{2}	\boldsymbol{x}	$m_{0}(\boldsymbol{y})$	$m_{1}(\boldsymbol{y})$	$m_{2}(\boldsymbol{y})$	$m_{3}(\boldsymbol{y})$	$f(\boldsymbol{x}) \oplus f(\boldsymbol{\alpha} \oplus \boldsymbol{x})$	$F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$
$\mathbf{0}$	$\mathbf{0}$	$\boldsymbol{\tau}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}}$
$\mathbf{0}$	$\mathbf{1}$	$\boldsymbol{\tau}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\boldsymbol{\xi}_{\alpha}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}} \oplus \mathbf{1}$
$\mathbf{1}$	$\mathbf{0}$	$\boldsymbol{\tau}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}}$
$\mathbf{1}$	$\mathbf{1}$	$\boldsymbol{\tau}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}}$	$\boldsymbol{\xi}_{\boldsymbol{\alpha}} \oplus \mathbf{1}$

Table 1: Truth table of $F_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$

Theorem 2: If $f(\boldsymbol{x})$ is a bent function with n variables, and we consider a nonzero $\boldsymbol{\lambda} \in B^{n}$, then

$$
\begin{aligned}
G(\boldsymbol{y}, \boldsymbol{x})= & \left(m_{i_{0}}(\boldsymbol{y}) \oplus m_{i_{1}}(\boldsymbol{y})\right) f(\boldsymbol{x}) \\
& \oplus m_{i_{2}}(\boldsymbol{y}) f(\boldsymbol{\lambda} \oplus \boldsymbol{x}) \\
& \oplus m_{i_{3}}(\boldsymbol{y})(1 \oplus f(\boldsymbol{\lambda} \oplus \boldsymbol{x}))
\end{aligned}
$$

is a bent function with $n+2$ variables.
Proof: As in Theorem 1, considerer a nonzero $(\boldsymbol{\beta}, \boldsymbol{\alpha}) \in B^{2} \times B^{n}$ and let

$$
\begin{aligned}
& G_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})=G(\boldsymbol{y}, \boldsymbol{x}) \oplus G((\boldsymbol{\beta}, \boldsymbol{\alpha}) \oplus(\boldsymbol{y}, \boldsymbol{x})) \\
& \quad=\left(m_{i_{0}}(\boldsymbol{y}) \oplus m_{i_{1}}(\boldsymbol{y})\right) f(\boldsymbol{x}) \\
& \quad \oplus\left(m_{i_{2}}(\boldsymbol{y}) \oplus m_{i_{3}}(\boldsymbol{y})\right) f(\boldsymbol{\lambda} \oplus \boldsymbol{x}) \\
& \quad \oplus\left(m_{i_{0} \oplus \boldsymbol{\beta}}(\boldsymbol{y}) \oplus m_{i_{1} \oplus \boldsymbol{\beta}}(\boldsymbol{y})\right) f(\boldsymbol{\alpha} \oplus \boldsymbol{x}) \\
& \quad \oplus\left(m_{i_{2} \oplus \boldsymbol{\beta}}(\boldsymbol{y}) \oplus m_{i_{3} \oplus \boldsymbol{\beta}}(\boldsymbol{y})\right) f(\boldsymbol{\alpha} \oplus \boldsymbol{\lambda} \oplus \boldsymbol{x}) \\
& \quad \oplus m_{i_{3}}(\boldsymbol{y}) \oplus m_{i_{3} \oplus \boldsymbol{\beta}}(\boldsymbol{y})
\end{aligned}
$$

- Assume that $\boldsymbol{\alpha}=\mathbf{0}_{n}$ and $\boldsymbol{\beta} \neq \mathbf{0}_{2}$. Then,

$$
\begin{aligned}
& G_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x}) \\
& =\left(\bigoplus_{t=0}^{1} m_{i_{t}}(\boldsymbol{y}) \oplus m_{i_{t} \oplus \boldsymbol{\beta}}(\boldsymbol{y})\right) f(\boldsymbol{x}) \\
& \quad \oplus\left(\bigoplus_{t=2}^{3} m_{i_{t}}(\boldsymbol{y}) \oplus m_{i_{t} \oplus \boldsymbol{\beta}}(\boldsymbol{y})\right) f(\boldsymbol{\lambda} \oplus \boldsymbol{x}) \\
& \quad \oplus m_{i_{3}}(\boldsymbol{y}) \oplus m_{i_{3} \oplus \boldsymbol{\beta}}(\boldsymbol{y})
\end{aligned}
$$

and taking into account that

$$
\begin{aligned}
& \left(i_{0} \oplus \boldsymbol{\beta}, i_{1} \oplus \boldsymbol{\beta}, i_{2} \oplus \boldsymbol{\beta}, i_{3} \oplus \boldsymbol{\beta}\right) \\
& \quad= \begin{cases}\left(i_{1}, i_{0}, i_{3}, i_{2}\right) & \text { if } \boldsymbol{\beta}=1 \\
\left(i_{2}, i_{3}, i_{0}, i_{1}\right. & \text { if } \boldsymbol{\beta}=2 \\
\left(i_{3}, i_{2}, i_{1}, i_{0}\right) & \text { if } \boldsymbol{\beta}=3\end{cases}
\end{aligned}
$$

we can consider the following cases:

- If $\boldsymbol{\beta}=1$, then

$$
G_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})=m_{i_{3}}(\boldsymbol{y}) \oplus m_{i_{2}}(\boldsymbol{y})
$$

which is balanced, because its truth table has four blocs

$$
\begin{array}{llll}
0 & 0 & 1 & 1
\end{array}
$$

not necessarily in that order, each one of length 2^{n}.

- If $\boldsymbol{\beta}=2$, in a similar way we have that

$$
\begin{aligned}
G_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})= & f(\boldsymbol{x}) \oplus f(\boldsymbol{\lambda} \oplus \boldsymbol{x}) \\
& \oplus m_{i_{1}}(\boldsymbol{y}) \oplus m_{i_{3}}(\boldsymbol{y})
\end{aligned}
$$

whose truth table has four blocs

$$
\xi_{\lambda} \quad \xi_{\lambda} \quad \xi_{\lambda} \oplus 1 \quad \xi_{\lambda} \oplus 1
$$

This truth table is balanced because $\xi_{\boldsymbol{\lambda}}$, the truth table of $f(\boldsymbol{x}) \oplus f(\boldsymbol{\lambda} \oplus \boldsymbol{x})$, is balanced.

- The case $\boldsymbol{\beta}=3$ is analogous to the case $\boldsymbol{\beta}=2$.
- Assume that $\boldsymbol{\alpha} \neq \mathbf{0}_{n}$ and $\boldsymbol{\beta}=\mathbf{0}_{2}$. Then,

$$
\begin{aligned}
& G_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x}) \\
& \quad=\left(m_{i_{0}}(\boldsymbol{y}) \oplus m_{i_{1}}(\boldsymbol{y})\right)(f(\boldsymbol{x}) \oplus f(\boldsymbol{\lambda} \oplus \boldsymbol{x})) \\
& \quad \oplus\left(m_{i_{2}}(\boldsymbol{y}) \oplus m_{i_{3}}(\boldsymbol{y})\right)(f(\boldsymbol{\lambda} \oplus \boldsymbol{x}) \\
& \quad \oplus f(\boldsymbol{\alpha} \oplus \boldsymbol{\lambda} \oplus \boldsymbol{x})) .
\end{aligned}
$$

So, the truth table of this function has four blocs

$$
\begin{array}{llll}
\xi_{1} & \xi_{1} & \xi_{2} & \xi_{2}
\end{array}
$$

where $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$ are the truth tables of $f(\boldsymbol{x}) \oplus$ $f(\boldsymbol{\lambda} \oplus \boldsymbol{x})$ and $f(\boldsymbol{\lambda} \oplus \boldsymbol{x}) \oplus f(\boldsymbol{\alpha} \oplus \boldsymbol{\lambda} \oplus \boldsymbol{x})$ respectively. Now, since $\boldsymbol{\xi}_{1}$ and $\boldsymbol{\xi}_{2}$ are balanced, because $f(\boldsymbol{x})$ and $f(\boldsymbol{\lambda} \oplus \boldsymbol{x})$ are bent functions, we can ensure that the above truth table is also balanced.

- Assume that $\boldsymbol{\alpha} \neq \mathbf{0}_{n}$ and $\boldsymbol{\beta} \neq \mathbf{0}_{2}$. By proceeding as in the first part, we obtain that the truth table of $G_{(1, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ has four blocs

$$
\begin{array}{lll}
\boldsymbol{\xi}_{1} & \boldsymbol{\xi}_{1} & \boldsymbol{\xi}_{2} \oplus \mathbf{1}
\end{array} \boldsymbol{\xi}_{2} \oplus \mathbf{1}
$$

not necessarily in that order; so, it is a balanced sequence.
Similarly for $G_{(2, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ and $G_{(3, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$.

So, the function $G_{(\boldsymbol{\beta}, \boldsymbol{\alpha})}(\boldsymbol{y}, \boldsymbol{x})$ is balanced and, consequently, $G(\boldsymbol{y}, \boldsymbol{x})$ is a bent function.

For a given bent function $f(\boldsymbol{x})$ in n variables, we can construct, according with Theorem 2, $(4!/ 2!)\left(2^{n}-1\right)=12\left(2^{n}-1\right)$ different bent functions in $n+2$ variables.

4 Conclusion

We have presented two methods to obtain iteratively new bent functions of $n+2$ variables from bent functions of n variables. These methods are based in the expression of Boolean functions as sum of minterms. With these methods we can construct, starting with a bent function of n variables, $4+12\left(2^{n}-1\right)$ bent functions. So, taking into account that if F is a bent function, then $F \oplus 1$ is also a bent functions, really we have $8+24\left(2^{n}-1\right)$ bent functions. The results of this paper are valuable in both theory and practical applications.

References:

[1] C. M. Adams and S. E. Tavares. Generating and counting binary bent sequences. IEEE Transactions on Information Theory, 35(5):1170-1173, 1990.
[2] E. Biham and A. Shamir. Differential cryptanalysis of DES-like cryptosystems. In A. J. Menezes and S. A. Vanstone, editors, Advances in Cryptology - CRYPTO '90, volume 537 of Lecture Notes in Computer Science, pages 2-21. Springer-Verlag, Berlin, 1991.
[3] Y. Borissov, A. Braeken, S. Nikova, and B. Preneel. On the covering radii of binary reedmuller codes in the set of resilient boolean functions. IEEE Transactions on Information Theory, 51(3):1182-1189, 2005.
[4] A. Braeken, V. Nikov, S. Nikova, and B. Preneel. On Boolean functions with generalized cryptographic properties. In Anne Canteaut and Kapaleeswaran Viswanathan, editors, Progress in Cryptology - INDOCRYPT 2004, volume 3348 of Lecture Notes in Computer Science, pages 120-135. Springer-Verlag, Berlin, 2004.
[5] C. Charnes and T. Yu. Covering sequences of boolean functions and their cryptographic significance. Designs, Codes and Cryptography, 25:263-279, 2002.
[6] P. V. Kumar and R. A. Scholtz. Bounds on the linear span of bent sequences. IEEE Trans-
actions on Information Theory, 29(6):854-862, 1983.
[7] K. Kurosawa, T. Iwata, and T. Yoshiwara. New covering radius of reed-muller codes for t resilient functions. IEEE Transactions on Information Theory, 50(3):468-475, 2004.
[8] A. Lempel and M. Cohn. Maximal families of bent sequences. IEEE Transactions on Information Theory, 28(6):865-868, 1982.
[9] F. J. MacWilliams and N. J. A. Sloane. The Theory of Error-Correcting Codes. North-Holland, Amsterdam, 6 edition, 1988.
[10] M. Matsui. Linear cryptanalysis method for DES cipher. In T. Helleseth, editor, Advances in Cryptology - EUROCRYPT '93, volume 765 of Lecture Notes in Computer Science, pages 386397. Springer-Verlag, Berlin, 1994.
[11] W. Meier and O. Staffelbach. Nonlinearity criteria for cryptographic functions. In J.J. Quisquater and J. Vandewalle, editors, Advances in Cryptology - EUROCRYPT'89, volume 434 of Lecture Notes in Computer Science, pages 549-562. Springer-Verlag, Berlin, 1998.
[12] S. Murphy and M. J. B. Robshow. Keydependent s-boxes and differential cryptanalysis. Designs, Codes and Cryptography, 27:229255, 2002.
[13] J. D. Olsen, R. A. Scholtz, and L. R. Welch. Bent-function sequences. IEEE Transactions on Information Theory, 28(6):858-864, 1982.
[14] K. Ren, J. Park, and K. Kim. On the construction of cryptographycally strong boolean functions with desirable trade-off. Journal of Zhejiang University SCIENCE, 6A(5):358-364, 2005.
[15] O. S. Rothaus. On "bent" functions. Journal of Combinatorial Theory (Series A), 20:300-305, 1976.
[16] P. Sarkar and S. Maitra. Construction of nonlinear boolean functions with important cryptographyc properties. In B. Prenee, editor, $A d$ vances in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in Computer Science, pages 485-506. Springer-Verlag, Berlin, 2000.
[17] P. Sarkar and S. Maitra. Efficient implementation of cryptographically useful "large" boolean functions. IEEE Transactions on Computers, 52(4):410-417, 2003.
[18] J. Seberry, X.-M. Zhang, and Y. Zheng. Nonlinearity and propagation characteristics of balanced boolean functions. Information and Computation, 119:1-13, 1995.

[^0]: ${ }^{1}$ This work was partially supported by Spanish grant MTM2005-05759

